Jump to content
SAU Community

Recommended Posts

for some reason the coolant lines are not connected up to the turbo, its an rb20 with a highflow vg30, im gonna hook them back up seeing as i have a spare rb20, just got a few questions;

1: would it be safe to assume that the line that usually runs directly from the block be the line going 'in'(water flowing into the turbo)?

2: if so, once that line is connected is it ok to just tap into any other coolant line for the return line (water flowing out of the turbo)?

i ask the second question as in comparison to my spare rb20, there has been several changes in the coolant lines behind the engine with a few lines being re-routed and it would make it much easier if i could just tap into one of these 're-routed' lines

thanks

Link to comment
https://www.sau.com.au/forums/topic/297260-turbo-coolant-lines/
Share on other sites

The stock lines are metal. You can just cut them and replace it with good quality water hoses. and they are lot easier to install.

just to clarify, i already have coolant lines from my previous rb20, which are aftermarket water lines, my only concern is that the water lines at the rear of this current rb20 have been altered, some being removed altogether, meaning i cannot simply plug in my previous lines in the same manner as befor, so really i am just wondering if it does not mater where i tap into these lines? for example, would i be able to tap into the large coolant line that comes out of the firewall almost behind the rocker covers?

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now


  • Similar Content

  • Latest Posts

    • It would be well worth deciding where you want to go and what you care about. Reliability of everything in a 34 drops MASSIVELY above the 300kw mark. Keeping everything going great at beyond that value will cost ten times the $. Clutches become shit, gearboxes (and engines/bottom ends) become consumable, traction becomes crap. The good news is looking legalish/actually being legal is slighly under the 300kw mark. I would make the assumption you want to ditch the stock plenum too and want to go a front facing unit of some description due to the cross flow. Do the bends on a return flow hurt? Not really. A couple of bends do make a difference but not nearly as much in a forced induction situation. Add 1psi of boost to overcome it. Nobody has ever gone and done a track session monitoring IAT then done a different session on a different intercooler and monitored IAT to see the difference here. All of the benefits here are likely in the "My engine is a forged consumable that I drive once a year because it needs a rebuild every year which takes 9 months of the year to complete" territory. It would be well worth deciding where you want to go and what you care about with this car.
    • By "reverse flow", do you mean "return flow"? Being the IC having a return pipe back behind the bumper reo, or similar? If so... I am currently making ~250 rwkW on a Neo at ~17-18 psi. With a return flow. There's nothing to indicate that it is costing me a lot of power at this level, and I would be surprised if I could not push it harder. True, I have not measured pressure drop across it or IAT changes, but the car does not seem upset about it in any way. I won't be bothering to look into it unless it starts giving trouble or doesn't respond to boost increases when I next put it on the dyno. FWIW, it was tuned with the boost controller off, so achieving ~15-16 psi on the wastegate spring alone, and it is noticeably quicker with the boost controller on and yielding a couple of extra pounds. Hence why I think it is doing OK. So, no, I would not arbitrarily say that return flows are restrictive. Yes, they are certainly restrictive if you're aiming for higher power levels. But I also think that the happy place for a street car is <300 rwkW anyway, so I'm not going to be aiming for power levels that would require me to change the inlet pipework. My car looks very stock, even though everything is different. The turbo and inlet pipes all look stock and run in the stock locations, The airbox looks stock (apart from the inlet being opened up). The turbo looks stock, because it's in the stock location, is the stock housings and can't really be seen anyway. It makes enough power to be good to drive, but won't raise eyebrows if I ever f**k up enough for the cops to lift the bonnet.
    • There is a guy who said he can weld me piping without having to cut chassis, maybe I do that ? Or do I just go reverse flow but isn’t reverse flow very limited once again? 
    • I haven’t yet cut the chassis, maybe I switch to a reverse flow. I’ve got the Intercooler mounted as I already had it but not cut yet. Might have to speak to an engineer 
    • Yes that’s another issue, I always have a front mount, plus will be turbo plus intake will big hasstle. I’ve been told if it looks stock they’re fine with it by a couple others who have done it ahahaha.    I know @Kinkstaah said the stock gtt airbox is limiting but I might just have to do that to avoid a defect so it atleast looks legit. Or an enclosed pod so it’s hidden away and feed air from the snorkel and below Intercooler holes like kinstaah mentioned. Hmm what to do 
×
×
  • Create New...