Jump to content
SAU Community

Recommended Posts

sinbad3.jpg

sinbad.jpg

Item: 1993 R33 GTS-t V SPEC (with ALSD)

Location: Southside Brisbane (willing to sell interstate)

Item Condition: Mechanically A1 serviced EVERY 5000k's at Gavin Wood - Autotech. Female owner.

Reason for Selling: Buying a house

Price and Payment Conditions: $22,500 or reasonable offer

Extra Info:

Model: 1993 R33 GTS-t (V-Spec with ALSD and ABS)... If you have to ask why it's a V-spec because of the ALSD, please search the forums. I'm sick of answering the questions.

Exterior:

  • Recently resprayed white with violet ice pearl

  • Blitz mag wheels 17x9 front and 17x10 rears currently with Nexen 235/40/17’s and Federal 255/40/17’s

  • Tinted windows

Transmission:

  • 5 Speed manual

  • Short shift

  • Organic clutch and pressure plate with R32 GTR Nismo spring. Only just installed on 05/08/05.

Engine:

  • Apexi PowerFC

  • Apexi AVCR

  • Apexi GT FMIC

  • K&N pod filter

  • Tomei exhaust cam gear

  • Splitfire coil packs

  • HKS Superdragger exhaust

  • Nismo dump pipe

  • 3” turbo back exhaust

  • 100,000k service done at 83xxx with genuine nissan parts

  • Currently with 130xxx k’s on the clock. Most k’s have been done during freeway driving.

Interior:

  • Two recaro reclinable racing seats

  • AVCR with two settings 0.7bar and 1bar.

  • Autometer boost gauge

  • Autometer air/fuel ratio gauge

  • A pillar 2 gauge holder

  • JVC MP3 head unit

  • Nismo black gear knob

  • New leather gear and handbrake boots

  • Momo steering wheel

  • Metal racing pedals

  • Fitted with a top of the line Mongoose alarm, immobiliser and central locking.

  • In car GME Electrophone 60 channel (40UHF 20 programmable) UHF radio.

Trying to save money for a house, and we don’t really cruise anymore. We have owned the car since it was imported into Australia in March 2002. Car was last dynoed with ~200rwkw. Best time of a 13.5 @ 103mph.

Contact Details: SAu PrivMsg, or erinatsauqld.com... Happy to give my mobile to interested parties, but I dont want every tyre kicker and joy rider ringing on my mobile. Not interested in a quick sale, so if your offer is ridiculous, please don't even bother wasting my time.

Link to comment
https://www.sau.com.au/forums/topic/84052-r33-gtst-v-spec-with-alsd/
Share on other sites

  • 2 weeks later...
  • 1 month later...
  • 2 months later...
  • 4 months later...

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now


  • Similar Content

  • Latest Posts

    • Don't they cool down technically when you're sitting at a set of lights? 
    • The circuit if not a resistor divider is using an opamp to deliver a specific current normally. By maintaining the current as resistance changes, the voltage does too. Add to that, thermistors are normally non linear too,which can make creating a function impossible. Most uses of a thermistor people will utilise a lookup table to get the corresponding temperature.
    • On a scale of 1 to 10, how shit are the RE003's? (10 being ultra mega shit) Was hoping they'd be alright for a non-daily driven R32 that might get driven to Charnwood Macca's in the dry once a month, and maybe the odd hoon up and down the hills that pass for mountains in sunny Canberra.  Bob Jane currently running a "Buy 4 Get 1 Free" deal on RE003s and my brain can't comprehend anything else being value for money
    • Yeah, they look good. I should try to fit them on mine. But being a GTSt, the guard shape probably doesn't suit properly.
    • Nah, it's not a simple voltage divider. I'm not enough of an electronics guru to know how they make these circuits work. If I had a better idea of how the ECU's temperature measuring is done, I could then actually do as you want, which is turn that resistance chart into a voltage chart. But my approach has not worked. What I did was interpolate the sensor ohms values for the temperatures you listed, as you did not have any of them on a temperature ending in zero or 5. These are: °C ECU V sensor ohms (interpolated) 58 2.68 11.85 57 2.7 11.89 56 2.74 11.93 54 2.8 12.01 49 3.06 12.208 47 3.18 12.284 43 3.37 12.42 I then assumed 5V supply to the resister and calculated the voltage drop across the sensor for each of those, which is just 5 - the above voltages, and then calculated the current that must be flowing through the sensor. So you get:             Values in sensor °C ECU V sensor ohms (interpolated) Supply volts Volt drop Current 58 2.68 11.85     5 2.32 0.195781 57 2.7 11.89     5 2.3 0.19344 56 2.74 11.93     5 2.26 0.189438 54 2.8 12.01     5 2.2 0.183181 49 3.06 12.208     5 1.94 0.158912 47 3.18 12.284     5 1.82 0.14816 43 3.37 12.42     5 1.63 0.13124 And then use that current and the ECU's sensed voltage (which must be the voltage drop across the in ECU resister is there is one) to calculate the resistance of that in ECU resistor. You get:             Values in sensor   Other resistor °C ECU V sensor ohms (interpolated) Supply volts Volt drop Current   Volt Drop Resistance 58 2.68 11.85     5 2.32 0.195781   2.68 13.68879 57 2.7 11.89     5 2.3 0.19344   2.7 13.95783 56 2.74 11.93     5 2.26 0.189438   2.74 14.46381 54 2.8 12.01     5 2.2 0.183181   2.8 15.28545 49 3.06 12.208     5 1.94 0.158912   3.06 19.25592 47 3.18 12.284     5 1.82 0.14816   3.18 21.46325 43 3.37 12.42     5 1.63 0.13124   3.37 25.67816 And that's where it falls apart, because the resulting resistance would need to be the same for all of those temperatures, and it is not. So clearly the physical model is not correct. Anyway, you or someone else can use that information to go forward if someone has a better physical model. I can also show you how to interpolate for temperatures between those in the resistance chart. It's not fun because you've got to either do it like I did it for every 5°C range separately, or check to see if the slope remains constant over a wide range, then you can just work up a single formula. I'm just showing how to do it for a single 5° span. For the 58°C temperature, resistance = 11.77+2*(11.97-11.77)/5 The calc is a little arse backwards because the resistance is NTC (negative temperature coefficient), so the slope is negative, but I'm lazy, so I just treated 58 as if it was 2 degrees away from 60, not 3 degrees away from 55, and so on.
×
×
  • Create New...