Jump to content
SAU Community

Recommended Posts

I wouldn't think it would be a set percentage, you'd really need to have provision for EGT sensors in each primary, and monitor all the temps while you adjust the cylinder trim.

I've seen pics of RB26's (may have been one of the big jap drag cars) where the head and/or block is tapped at the back to accept a second coolant hose to better control temperatures. But that may have been due to the RB26 manifold enleanment mentioned above.

Still, if the fundamental problem is heat, and not actually mixtures, then more cooling at the back of the engine may fix the problem, rather than just treating the "symptoms", ie richening the mixtures.

i would have thought that if there was less air getting to the back 2 cylinders (which i presume are no 5 and 6), then they would be running rich, as less air with the same fuel means a richer mixture.... or have i got it all wrong?

GiJOr33, you reasoning is right, however Sydneykid indicated that the airflow in the GTR / GTR Style manifolds was biased *towards* 6 & 5, rather than the other way round, so they run lean.

He also stated that this (air distribution) was not a problem on the 20/25's, so *if* there was going to be a cooling problem at the back of the engine, it would be cooling related, not mixture related, so changing your mixtures would be working against the goal of optimum tuning.

IF testing with EGT probes (not lambda in this case) or similar indicated that there was a problem with cooling, then you would be better off tapping in a coolant line to the back of the block to better distribute the coolant.

And upgrading the water pump and radiator on any high po engine, esp a turbo one, is never a bad idea. Provided your thermostat works properly, then you can't have too much cooling : )

aaaahhhhh.... i was thinking that the first 4 cylinders were using up most of the air in the plenum before it reached the back 2. What must be happening is that the velocity of the air means if flows fast enough so that most of it hits the back of the plenum, meaning cylinder 5 and 6 get the most air and run lean.

If you bow air into a tube from one end and block the other end, then most of the air will be where the tube is blocked, so feeds better into the rear cylinders that the front ones - this would explain the tapering off of the plenum at the rear too. If the plenum was sealed pressure would be equal on all surfaces, but once you open an inlet vavle, the flow dynamics of the entire plenum change - this is why it takes so much time to design any plenum properly, and the flow of each runner must be measured individually - to ensure they are matched as closely as possible.

haveing said that, it would follow that the stock RB20/25 plenum would be biased towards 3 and 4, perhaps they just got the design spot on? From Corky Bells books on forced induction, the plenum design for the RB20/25 is better than a front mounted throttle body.

Interesting subject.

Hi Steve, you asked "As far as cooling for rear cylinders, could it be overheating on 5 and 6 because they are running a bit leaner?"

It's a bit of a circle, 5 & 6 run hotter so they lean out and they lean out so they run hotter. And around it goes.

As for the percentage leaner, I haven't seen any more than 5% and ours is between 2% and 3%. That's at 1.5 bar, at less than 1.3 bar it is hardly anything at all, less than 1%. More important than boost, we are running over 65 lbs of air per minute. That amount of airflow really backs up at the back of the plenum as Steve said in a previous post.

Hope that clarifies

by lifting the rear of the bonnet you would be cooling the rear cylinders more by allowing external airflow.

how effective is it to reduce engine temps from the exterior of an engine (venting the bonnet or raising it) compared to cooling the internals (coolant/fuel) ?

  • 8 months later...

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now


  • Similar Content

  • Latest Posts

    • Did this end up working? Did you take some pictures?
    • And finally, the front lower mount. It was doubly weird. Firstly, the lower mount is held in with a bracket that has 3 bolts (it also acts as the steering lock stop), and then a nut on the shock lower mount itself. So, remove the 3x 14mm head bolts , then the 17mm nut that holds the shock in. From there, you can't actually remove the shock from the lower mount bolt (took me a while to work that out....) Sadly I don't have a pic of the other side, but the swaybar mounts to the same bolt that holds the shock in. You need to push that swaybar mount/bolt back so the shock can be pulled out past the lower control arm.  In this pic you can see the bolt partly pushed back, but it had to go further than that to release the shock. Once the shock is out, putting the new one in is "reverse of disassembly". Put the top of the shock through at least one hole and put a nut on loosely to hold it in place. Put the lower end in place and push the swaybar mount / shock bolt back in place, then loosely attach the other 2 top nuts. Bolt the bracket back in place with the 14mm head bolts and finally put the nut onto the lower bolt. Done....you have new suspension on your v37!
    • And now to the front.  No pics of the 3 nuts holding the front struts on, they are easy to spot. Undo 2 and leave the closest one on loosely. Underneath we have to deal with the wiring again, but this time its worse because the plug is behind the guard liner. You'll have to decide how much of the guard liner to remove, I undid the lower liner's top, inside and lower clips, but didn't pull it full off the guard. Same issue undoing the plug as at the rear, you need to firmly push the release clip from below while equally firmly gripping the plug body and pulling it out of  the socket. I used my fancy electrical disconnect pliers to get in there There is also one clip for the wiring, unlike at the rear I could not get behind it so just had to lever it up and out.....not in great condition to re-use in future.
    • Onto the rear lower shock mount. It's worth starting with a decent degrease to remove 10+ years of road grime, and perhaps also spray a penetrating oil on the shock lower nut. Don't forget to include the shock wiring and plug in the clean.... Deal with the wiring first; you need to release 2 clips where the wiring goes into the bracket (use long nose pliers behind the bracket to compress the clip so you can reuse it), and the rubber mount slides out, then release the plug.  I found it very hard to unplug, from underneath you can compress the tab with a screwdriver or similar, and gently but firmly pull the plug out of the socket (regular pliers may help but don't put too much pressure on the plastic. The lower mount is straightforward, 17mm nut and you can pull the shock out. As I wasn't putting a standard shock back in, I gave the car side wiring socket a generous gob of dialectric grease to keep crap out in the future. Putting the new shock in is straightforward, feed it into at least 1 of the bolt holes at the top and reach around to put a nut on it to hold it up. Then put on the other 2 top nuts loosely and put the shock onto the lower mounting bolt (you may need to lift the hub a little if the new shock is shorter). Tighten the lower nut and 3 upper nuts and you are done. In my case the BC Racing shocks came assembled for the fronts, but the rears needed to re-use the factory strut tops. For that you need spring compressors to take the pressure off the top nut (they are compressed enough when the spring can move between the top and bottom spring seats. Then a 17mm ring spanner to undo the nut while using an 8mm open spanner to stop the shaft turning (or, if you are really lucky you might get it off with a rattle gun).
    • You will now be able to lift the parcel shelf trim enough to get to the shock cover bolts; if you need to full remove the parcel shelf trim for some reason you also remove the escutcheons around the rear seat release and you will have to unplug the high stop light wiring from the boot. Next up is removal of the bracket; 6 nuts and a bolt Good news, you've finally got to the strut top! Remove the dust cover and the 3 shock mount nuts (perhaps leave 1 on lightly for now....) Same on the other side, but easier now you've done it all before
×
×
  • Create New...