Jump to content
SAU Community

Recommended Posts

I've posted this in the other section of the forum but no one replied, so I thought to try here. Anyway, water is always leaking from the windscreen washer thingy onto my bonnet. Does that happen to anyone else? Or does someone know how to fix it? It's a series 2 R33.

Thanks

Link to comment
https://www.sau.com.au/forums/topic/228429-water-leaking-from-r33-bonnet/
Share on other sites

I've posted this in the other section of the forum but no one replied, so I thought to try here. Anyway, water is always leaking from the windscreen washer thingy onto my bonnet. Does that happen to anyone else? Or does someone know how to fix it? It's a series 2 R33.

Thanks

OMG I thought I was the only one with this stupid problem! It's so annoying, seems to mainly happen when I hit full boost or take a quick corner. I use it as my G-force meter (Lol).

But seriously I wanna fix this too. I just avoid using the windscreen washers, but it still keeps happening.

How would a 1-way valve work? Cos you need water to pass from the reservoir to the jet, water never goes the other way anyway. Hopefully someone has a fix for this.

Does it leak form the actual jet or the line?

If you think about it, the head on one of those jets is VERY small, like a pin hole so you would not expect water would be able to leak out AND allow air back in at the same time. For the line to leak water it has to allow air in somewhere to equalise the space. Based on this (and mind you I've had no coffee this morning) I'd be looking for leaks in your washer line or the jet connection that coudl allow air in. Just a thought...

Alternatively maybe your jets are just farked, they could be corroded or perhaps the hole is just too big? Might need new one?

A one way jet is like a small tube with a ball bearing in it that will only allow water to flow in one direction, wouldn't work if you ask me since water coming out is the issue!

It's from the jet itself. So the water leaks onto the bonnet.

And like dilmah said, it leaks when you are taking a corner too fast but I think mine just leaks when I'm driving normally on 80km.

curious does it do it all the time or only when the washer bottle is full???

All the time. But I rarely washes my windscreen with it. So maybe the bottle is still full or something, I'll have to go check.

well i had set up an ic water spray and it would leak at the nozzle due to gravity so i used a one way valve. the valve lets water through when theres pressuer by the pump and closes it off when theres no pressure so i dont see why you guys think it wont work with the windscreen nozzles as its the same application? i picked up a valve from a holden wrecker that was specifically used for windscreen nozzles so i thought it was commonly used.

just a suggestion if you run out of ideas but yeah check your lines. is it leaking both or just the one?

well, that's a good idea. i'll have to try that valve out & I'll let you know how i go. They both leak, but it's mostly the passenger side that's much worse, sprays onto the windscreen sometimes and drips down the side of the wheel arches, etc.

maybe i'll go try find one from a wreckers this weekend.

  • 1 month later...

Well, I found one of these at a wreckers from a dihatsu or something and installed it inline before the washer jets. Looks like it's done the trick. haven't seen much leakage since I did that about a month ago.

Sorta looks like this, but the one i found was black. When installing it, it'll only allow water to flow one way. Not sure how it works, since I thought by it allowing water to flow towards the jets it'll still leak, but it doesn't leak and my washer jets still work fine :(

WLV%2010001.JPG

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now


  • Similar Content

  • Latest Posts

    • That's kind of what I was getting at saying you'd be here soon regarding length etc being able to add additional restriction.  My assumption (possible donkeys of you and mption) is that the length of hose to an oil cooler, and back, isn't going to be that huge of a loss. Typically you're talking about 1.5m of total length. And so far everyone in our world hasn't had issues with oil not being able to get to a cooler and back, it's more been, how the heck do we get the oil out of the head and back down to the bottom? I'd nearly hazard a guess the biggest issue people have with oil cooling and oil supply, is being able to get the heat out at the cooler itself (not enough air flow, too small of a cooler etc) Also, when people mount them wrong and make really awesome air traps so they've dramatically diminished the cooling capacity.
    • I will rebutt this and the preceding point from Dose....but without doing any calcs to demonstrate anything and without knowing that I am right or wrong. But... The flow capacity of a fluid transfer system is not limited by the smallest orifice or section of conduit in that system, unless it is drastically smaller than the rest of the system. OK, I use the word drastically perhaps with too much emphasis, but let's drill down on what I really mean. The flow capacity of the system is the result of the sum of the restrictions of the entire system. So, to make an extreme example, if you have a network with 3" pipe everywhere (and let's say a total length of only a few metres) and that 12mm ID restriction of the oil filter connection being the obvious restriction, then for any given amount of pressure available, the vast majority of all the pressure drop in the system is going to occur in the 12mm restriction. But.... increase the length of the 3" pipeline to, say 1000m, and suddenly the pipe pressure loss will likely add up to either be in the same order of magnitude, possibly even exceeding that of the 12mm restriction. Now the 12mm restriction starts to matter less. Translate this to the actual engine, actual oil cooler hose sizing, etc etc, and perhaps: The pressure loss caused by flowing through the narrow section (being the 12mm oil filter port, and perhaps any internal engine oil flow pathways associated with it) is a certain number. The pressure loss through, say, -12 hoses out to the cooler and back is negligible, but The pressure loss through -10 hoses out to the cooler, at the exact same length as the above, starts to become a decent fraction of the loss through the 12mm stuff at the filter port. Maybe even it starts to exceed it. I could actually do these calcs if I knew 1) how much oil was actually flowing in the line, 2) gave enough of a f**k to do things that I hate doing for work, voluntarily for a hypothetical discussion. Anyway - I reiterate. It's not the narrowest port that necessarily determines how much it can all flow. It is the sum. A long enough length of seemingly fat enough pipe can still cause more loss than a semmingly dominant small bore restriction.
    • To pick up what Dose is putting down. Not a lot of point running a huge hose if the motor is still restricted to the smaller size... It's only capable of flowing so much at that point...   *Waits for GTSBoy to come in and bring in the technicalities of length of pipe, and additional restriction from wall friction etc etc*
    • Hooley Dooley these things have some history! If i sell them they will need a certificate of providence to prove they have been in the hands of verified RB20 royalty! They have been stored in a plastic tub, away from sunlight and moisture. They are in mint condition. And they will stay that way, as i have sprung the money for a set of shockworks coilovers. I'm just working on getting them in at the moment, after rebushing the rear of the car, and while the subframe was out i welded in the GKtech reinforcement bracing as well.  They will get a workout at Ararat King of The Hill in November. I ran 48s on the short course there a few months ago, and i am hoping with new bushes and shocks in the rear i can launch a bit harder. There was a fair bit of axle tramp when i tried too hard off the line. a few of the corners had dips mid way which also made the car feel a bit unsettled, hopefully this will help there too.   
    • Food for thought, the stock oil filter thread is a 3/4-16 UNF, which has an ID of about 10 to 12mm (according to ChatGPT lol). Now compare than to an 10AN, which has an ID of about 14mm (Raceworks is 14.2mm, Speed flow is 14.27mm).  
×
×
  • Create New...