Jump to content
SAU Community

Recommended Posts

Therre was a ca/sr ecu that changed between sequential and batch, but considering the rb20 ecu only has 2 injector drivers it is batch only. No sure about ignition tho.

Pretty sure ignition is because you have 6 ignitors, if it was batch they would save money and use 2 or 3.

  • Replies 63
  • Created
  • Last Reply

Top Posters In This Topic

Not enough memory I guess the extra timing calculations would require alot more code CPU used has limited outputs

Im actually a programmer and one of my job was writing software for old processors, namely the same cpu used in these early boards. The code for writing to 2 outputs vs 6 and doing sequential vs batch is basically identical, the cpu still runs fast enough to process that many events. I can't see the CPU being the limiting factor, would have been something else but f**ked if I know what.

Funny enough I'm a programmer aswell yeah there wouldn't be a heap of extra code there is a bit of room available then again I've never worked on these chips they are probably faster than I give them credit for

You guys dont have a clue.

You realise in going to the haltech you will be batch firing injectors and coils! The std ECU is fully sequential on both. It will do everything about 100times better than the haltech ever will.

http://www.fueltech....pdfs/HalE6K.pdf
8 injector drivers as standard equipment
There is a reason haltech doesn't support the earlier ECU's anymore is beacuse they are shit.
You dont think it has something to do with the fact that the e6k is near on 10 yrs old now and used old technology, how many companies do you know of that keep producing things for 10yr old hardware when there goal is to always develop newer technology? Edited by W0rp3D

A bunch of programmers here haha.

Not a lot of additional code would be required to implement fully sequential injection/ignition. You basically just need slightly more sophisticated CAS decoder subroutine and cylinder counter and assign calculated outputs to different output ports based on that counter (using it as either input variable or index on inj/ign subroutine call). It's just one more routine and a couple of additional RAM values.

Those old CPU's are not very fast, but fast enough to handle engine management (some of early factory ECU's have hardware cap of 8000 rpm - been tested by Nistune developers, don't remember if RB20 is one of them). The only reason for not using fully sequential management I can think of is CPU may not have enough output ports.

Multiplexing can be a bit tricky in real-time applications like engine management. Requires some cleverly arranged synchronization.

On the other hand, it depends on how exactly CAS/load-calc-output data flow is implemented.

By the way I'm pretty sure I've read somewhere that R32 RB26 uses fully sequential management.

Neo motors use 16-bit processor, different family and higher performance. R34's use Mitsubishi 7700 processors, earlier Skyline ECUs use some kind of Motorola 8-bit clone manufactured by JECS, if I'm not mistaken.

EDIT: I mean I'm agreeing with you :) I'm just explaining why full seq. mode is easier for later ECUs

Edited by Legionnaire

Neo motors use 16-bit processor, different family and higher performance. R34's use Mitsubishi 7700 processors, earlier Skyline ECUs use some kind of Motorola 8-bit clone manufactured by JECS, if I'm not mistaken.

Yep, much newer processor with more features.

Not necessarily so. The CPU itself may be the same/similar, but its peripheral devices can be very different - it's an ECU architecture thing. E.g. RB26 ECU may incorporate multiplexing/decoding logic you were talking about.

Sure, it is all speculation only. The best way to do it is to open ECU case and take a look what's in there. And assembly code would be handy also.

But I seriously think they are all sequential, otherwise they would use crank sync trigger instead of CAS.

By the way 16-bit processors are seriously faster than 8-bit in this particular case because all AFM values and load calculations use 16-bit arithmetic.

  • 4 weeks later...

Hey I was wondering what ecu would be better for my setup mods are

Td06h-20g 8cm housing

550 injectors

3 inch exhaust

35 mm turbosmart external wastegate 17 psi

Stainless high mount

32 gtr cooler

I know nistune will be cheaper but lets put price aside on this one

so which one did you go with?

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now



  • Similar Content

  • Latest Posts

    • For DBA, check out their guide table here. https://dba.com.au/wp-content/uploads/2023/01/Direct_Replacement-Guide-2021.2.pdf   Additionally they have some other guides and info on how to make sure you choose the right pad.
    • Sorry, just assumed that talk of coloured pads meant EBC red/green/yellow/shit stuff. I don't know the DBA pads, but it's a reasonable bet that they will be OK. DBA make good stuff generally. Those 4000 series rotors I linked to are very good. I may well replace the RDA rotors I have with those when required.
    • The average previous owner for these cars were basically S-chassis owners in the US. Teenagers or teenager-adjacent. I often tell people that neglect is easier to fix than something that was actively "repaired" by previous owners.
    • Update 3: Hi all It's been a while. Quite a lot of things happened in the meantime, among other things the car is (almost) back together and ready to be started again. Things that I fixed or changed: Full turbo removal, fitting back the OEM turbo oil hardlines. Had to do quite a bit of research and parts shopping to get every last piece that I need and make it work with the GT2860 turbos, but it does work and is not hard to do. Proves that the previous owner(s) just did not want to. While I was there I set the preload for the wastegates to 0,9bar to hopefully make it easier for the tuner to hit the 370hp I need for the legal inspections that will follow later on. Boost can always go up if necessary. Fitted a AN10 line from the catch can to the intake hose to make the catchcan and hopefully the cam covers a slight vacuum to have less restrictive oil returns from the head and not have mud build up as harshly in the lines and catch can. Removed the entire front interior just shy of the dashboard itself to clean up some of the absolutely horrendous wiring, (hopefully) fix the bumpy tacho and put in LED bulbs while I was there. Also put in bulbs where there was none before, like the airbag one. I also used that chance to remove the LED rpm gauge on the steering column, which was also wired in absolute horror show fashion. Moved the 4in1 Prosport gauge from sitting in front of the OEM oil pressure gauge to the center console vents, I used a 3D printed vent piece to hold that gauge there. The HKB steering wheel boss was likely on incorrectly as I sometimes noticed the indicator reset being uneven for left vs. right. In the meantime also installed an airbag delete resistor, as one should. Installed Cube Speed premium short shifter. Feels pretty nice, hope it'll work great too when I actually get to drive. Also put on a fancy Dragon Ball shift knob, cause why not. My buddy was kind enough to weld the rust hole in the back, it was basically rusted through in the lowermost corner of the passenger side trunk area where the wheel arch, trunk panel and rear quarter all meet. Obviously there is still a lot of crustiness in various areas but as long as it's not rusted out I'll just treat and isolate the corrosion and pretend it's not there. Also had to put down a new ground wire for the rear subframe as the original one was BARELY there. Probably a bit controversial depending on who you ask about this... but I ended up just covering the crack in the side of the engine block, the one above the oil feed, with JB Weld. I used a generous amount and roughed up the whole area with a Dremel before, so I hope this will hold the coolant where it should be for the foreseeable future. Did a cam cover gasket job as the half moons were a bit leaky, and there too one could see the people who worked on this car before me were absolute tools. The same half moons were probably used like 3 times without even cleaning the old RTV off. Dremeled out the inside of the flange where the turbine housing mates onto the exhaust manifolds so the diameter matches, as the OEM exhaust manifolds are even narrower than the turbine housings as we all know. Even if this doesn't do much, I had them out anyways, so can't harm. Ideally one would port-match both the turbo and the manifold to the gasket size but I really didn't feel up to disassembling the turbine housings. Wrapped turbo outlet dumps in heat wrap band. Will do the frontpipe again as well as now the oil leak which promted me to tear apart half the engine in the first place is hopefully fixed. Fitted an ATI super damper to get rid of the worn old harmonic balancer. Surely one of the easiest and most worth to do mods. But torquing that ARP bolt to spec was a bitch without being able to lock the flywheel. Did some minor adjustments in the ECU tables to change some things I didn't like, like the launch control that was ALWAYS active. Treated rusty spots and surface corrosion on places I could get to and on many spots under the car, not pretty or ideal but good enough for now. Removed the N1 rear spats and the carbon surrounding for the tailpipe to put them back on with new adhesive as the old one was lifting in many spots, not pretty. Took out the passenger rear lamp housing... what do you know. Amateur work screwed me again here as they were glued in hard and removing it took a lot of force, so I broke one of the housing bolts off. And when removing the adhesive from the chassis the paint came right off too. Thankfully all the damaged area won't be visible later, but whoever did the very limited bodywork on this car needs to have their limbs chopped off piece by piece.   Quite a list if I do say so myself, but a lot of time was spent just discovering new shit that is wrong with the car and finding a solution or parts to fix it. My last problem that I now have the headache of dealing with is that the exhaust studs on the turbo outlets are M10x1.25 threaded, but the previous owner already put on regular M10 nuts so the threads are... weird. I only found this out the hard way. So now I will just try if I can in any way fit the front pipe regardless, if not I'll have to redo the studs with the turbos installed. Lesson learned for the future: Redo ALL studs you put your hands on, especially if they are old and the previous owners were inept maniacs. Thanks for reading if you did, will update when the engine runs again. Hope nothing breaks or leaks and I can do a test drive.
×
×
  • Create New...