Jump to content
SAU Community

Recommended Posts

Brake Terminology, Technical and Trends

Hi Guy's,

I have a favourite saying "No matter how much you polish a turd, its still a turd".

I've been away from the brake industry for a while but some things never change. The polishing of products to convince people to buy. I thought it might be a good idea to share some technical terms and some of the science behind brakes so you can compare apples for apples as they truely are behind the glossy marketing and verbal diarrhea. 

I have no intention of naming or bagging out any brands or manufacturers (unless they piss me off) so lets keep it clean and educational.

Brake Pads

I’ve been fortunate enough to have been factory trained with a couple of friction lining manufacturers around the world. NAO, Sintered metal, carbon metallic and low metal high carbon pads. 

One thing is for sure, its personal. Every driver has a different perception of what is good braking. Why we have so many arguments ;-)

The most basic of identifiers for brake lining characteristics is the good old SAE J661 hot and normal (cold) friction coefficient test which is the codes stamped on the pad backing plate. They will look like; EF, FF, GF, GG etc printed in between a whole heap of numbers. The other numbers refer to batch codes and friction formula used. The USA and Europe require this detail to be marked on the pads to comply to various legislations.

 

SAE J661 - Friction identifiers.

Normal Friction , Hot Friction   is the order of the codes

E = 0.25 to 0.35 mu

F = 0.35 to 0.45 mu

G = 0.45 to 0.55 mu

H = 0.55 and above 

 

The USA (mainly Ca and Wa) have introduced a hazardous materials legislation called Chapter 70.285 RCW which I have had the joy of participating in for compliance. They've identified a number of ingredients in brake linings that are polluting water ways and making their fish glow in the dark. Copper reductions is a major topic in the USA as this is one of the main offenders. As with the bans on asbestos many years ago, the same appears to be happening with Copper. 

Another topic is the European R90 compliance. Its been around for a long while but is gaining more focus locally. Possibly because sales guys have run out of things to talk about. R90 is all about driving comfort. NHV (Noise, Vibration, Harshness) is the focus. This is directed towards regular road pads of which most OEM's are compliant and aftermarket no so much. 

 

Key metrics for measuring performance; I'll add some more detail about these soon.

Torque response  (initial bite)

Peak effectiveness (peak friction @ time/temp/pressure)

Release speed (speed to fully retract)

Modulation factor (compressibility and a combo of above)

Pad wear 

 

A good driver will understand these metrics and will be able to adjust his methods to suit in order to achieve the desired outcome whether it be sprints, endurance, off road, or just regular road driving.

I hope this terminology helps.

Please feel free to ask any questions. No such thing as a dumb question.

 

Cheers

DBASteve

  • Like 1

It's not a legal requirement in Australia to conduct the J661 test or print on the backing plates.......yet. There is little legislation in Australia to control the after market.

I suggest you ask the reseller for the hot and cold friction coefficients and see if he chokes.

So why is normal and hot friction characteristics important?

Depending on the material elements used in a compound the friction lining will behave differently at different temperatures. This has many positives when deciding on a material that best suits the application and driving style. Torque Response or Initial bite is one of the key characteristics considered at low temperatures. If your starting an event or routine and your brake temperature is low (approx 100 C) then the friction level most likely will be different to when the brake temp is 200, 300, 400, 500, etc. The SAE J2522 or AK Master dyno test has a routine to collect this data when developing a product. 

I've attached an example chart of some random test data off a dyno. The initial torque response is clear to see and so is the peak effectiveness. So if I wanted to run for lead position at the first corner with cold brakes (100 C) and stabilise at 0.5 mu to achieve good modulation I'd probably lean towards the red compound. If I had warmed up to 250 C then I may go for the black compound. If I were in a lighter car or going argy bargy then the blue or yellow may be the better choice. 

Choosing a compound based on max friction is not as simple as most egberts make it out to be nor is it the best option in many applications. Too much friction at the wrong time can flat spot tyres or put you on the grass (hopefully), initiate ABS modulation which governs braking performance or too little affects confidence and competitiveness. 

Forum_fricPerf.jpg

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now


  • Similar Content

  • Latest Posts

    • So stock ECU does not like anything above 10 psi?  That Nistune one is just for "try" if it will be any different, I know it need to be tune for that. I know but YOU may know about these problem but i/we dont. They few little Skylines here let alone people who know anything about tham so that is why iam asking here  
    • So now we have a radiator with no attachments whatsoever. It lifts up with a particularly tight spot between the drivers side air box mount and the lower radiator outlet, but if you've got this far you will sort that too. This is the lower mounts with the rad out so you can see where the rubber bushes go, it is a straight shot upwards Done! Assembly is the reverse of disassembly, with blood less likely to be shed.
    • Right, onto the second last trick. The Air Con condenser is mounted to the front of the radiator and stays in the car when the radiator is removed. There are 2x 10mm headed self tappers holding the top of the condenser to the radiator, remove those The bottom of the condenser is attached to the radiator with clips. You need to lift the condenser out of those clips and clear (up, then forward). f**ked if  could work out how to do that last bit with the front bumper on. I hope you can, and you share the trick.  Bumper removal probably deserves its own thread one day once I've recovered the will to live, but basically you need to remove the wheels, front inner guard liners (clips and 10mm headed bolts), the self tapper between the guard and the bumper at the rearmost point of the bumper (same as an R32 that bit), any remaining clips at the top/front of the grill, an absolute bastard design with a plate that holds the top of the bumper above the headlight each side (only 1 bolt which is tricky to get to, but the plate catches 2 places on the bumper and must be removed....carefully!) and push clips between the bumper and guard under the headlight. If you've done all that you will be faced with wiring for the fog lights on both sides and in ADM Q50 RS at least, 4 nasty tight plugs on the driver's side for the ADAS stuff. So, the clips at the bottom look like this on drivers side (looking from the front) And on the passenger side (also from the front), you can see this one is already out Clearance on both of these are super tight; the condenser needs to move up but the upper rad support mount prevents that, and the radiator can't move down far because it is (rubber) mounted. Once you achieve the impossible and drop the condenser off those mounts so it does not stop the rad moving, you are good to go
    • OK, next the shroud needs to come off and there are a couple of tricks. Firstly, there is a loom from near the passenger side headlight to the fans, coolant temp sensor etc and there is no plug to undo.  In my case I was OK to leave the shroud on top of the engine so I just undid the passenger side fan plug and about 10 of the clips which gave enough free wire to put it aside. The fan plugs were super tight, the trick I used was a small falt screwdriver to push down on the release tab, then a larger flat screwdriver to lever the plug out of the fan unit....be careful with how much force you apply! If you need to remove the shroud altogether for some reason you will have to deal with all the plugs (tight) and clips (brittle)....good luck. I removed all of the clips and replaced them with cable ties that I will just cut next time. Also, in the Red Sport / 400R at least, the intake heat exchanger reservoir hose is bolted to the shroud in 2 places with 10mm headed bolts; so remove them (the hose stays in the car; no need to undo it at the t fittings down at the radiator lower mount. Once you've dealt with the HX hose and the wiring loom, there are 3x 10mm headed self tappers holding the top of the shroud to the radiator; remove those.   The shroud then lifts out of the bottom mounts where it sits on the radiator, up and onto the engine out of the way. Simples
    • Ok, disregard my “rate them” comment, sorry for my unrealistic input
×
×
  • Create New...