Jump to content
SAU Community

Recommended Posts

Well my theory is that the turbo to IC pipe should be bigger then IC to throttle for 1 reason:

1. Hot air takes up more space then cold air (i.e. is less dense, therfore requires a bigger space to flow the same volume of air)

There are more reasons (and theories) to why i think this setup is better, however that is the main reason.

I just can see how having a smaller pipe (say 2") from the turbo to IC and then a massive (say 3" pipe) from IC to throttle. Why would this setup be better if it is? Can anyone shed any light on this?

Originally posted by zforce

Well my theory is that the turbo to IC pipe should be bigger then IC to throttle for 1 reason:

1. Hot air takes up more space then cold air (i.e. is less dense, therfore requires a bigger space to flow the same volume of air)

I thought it was the other way around

zforce is right with hot air taking up more space than cold air - hot air particles are agitated and thus expand. However, i believe that the reason the piping from the cooler to the throttle is larger than piping from the turbo to the cooler is for a couple of reasons:

1. the smaller the diameter of the pipe after the turbo (within reason, that is, not to try and force it through a maccas straw), the higher the pressure and the faster the fluid velocity. Fast velocity = good for flow to the cooler. While it will be hotter than in a pipe of larger diameter (remember that as air cools it reduces in vol and as air is warmed it takes up more volume), the cooler is designed to shed this extra (if any) heat.

2. After the IC, if the cooler has done its job the air will be significantly cooler than before the cooler. This air hence takes up less volume, and is slower in velocity. However due to the vacuum effect of the intake when the throttle is open (ie. how a N/A car 'sucks' its intake air charge), this reduction in velocity is minimal.

3. Now for point 2 i've said that the air takes up less volume, and the less volume it takes up, the less pressure it is at. This may have a 'pulling' effect on air travelling through the intercooler - remember that air naturally moves from high pressure to low pressure - effectively helping flow of hot air through the cooler.

Hope that is clear... bye :wavey:

Thanks Ronin 09,

Sorry to jump off topic,

I am running a "cut & shut" RB26/25 intake manifold, (il post some pics later)

would that type of setup cost more, than say the standard RB25 Intake setup? Or will they be about the same?

Also will the price inlcude silicon joiners & clamps?

Unsure if that includes silicon joiners, but it is complete. I would guess that if you want silicon joiners it may cost a bit more (they're about 100 bucks each!).

I would again assume that your cut n shut should cost (marginally if any) less as the piping is shorter. Either way they'll have to hack a hole anyway.

Hi Guys, I have a very good reason for gradually increasing the size of the intercooler pipework as the air moves from the turbo to the throttle body. Nissan do it, and they spent heaps on research.

Everybody explains airflow like it's in slow motion. At 4,000 rpm an RB25 at 1 bar will swallow all of the air in the inlet system in less than 1/20th of a second. At that velocity I don't believe 80 degree air (before I/C) is much different to 30 degree air (after I/C). Taking pressure reading proves this to be the case, there isn't any difference unless there is I/C restriction. If the hot air vs cold air made any noticeable difference in pressure, then you would be able to see it, and I never have. So in my opinion too small to worry about.

MrRB20, asked "how much on average would it be to pipe the cooler seeing it is a custom intercooler and the intake and outtake are on different sides unlike the standard cooler which is on the same size ??"

I do my own in aluminium (straight and donuts), silicone (hose) and stainless steel clamps, the materials usually ends up around $500 including about $80 for welding.

Hope that helps

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now


  • Similar Content

  • Latest Posts

    • And finally, the front lower mount. It was doubly weird. Firstly, the lower mount is held in with a bracket that has 3 bolts (it also acts as the steering lock stop), and then a nut on the shock lower mount itself. So, remove the 3x 14mm head bolts , then the 17mm nut that holds the shock in. From there, you can't actually remove the shock from the lower mount bolt (took me a while to work that out....) Sadly I don't have a pic of the other side, but the swaybar mounts to the same bolt that holds the shock in. You need to push that swaybar mount/bolt back so the shock can be pulled out past the lower control arm.  In this pic you can see the bolt partly pushed back, but it had to go further than that to release the shock. Once the shock is out, putting the new one in is "reverse of disassembly". Put the top of the shock through at least one hole and put a nut on loosely to hold it in place. Put the lower end in place and push the swaybar mount / shock bolt back in place, then loosely attach the other 2 top nuts. Bolt the bracket back in place with the 14mm head bolts and finally put the nut onto the lower bolt. Done....you have new suspension on your v37!
    • And now to the front.  No pics of the 3 nuts holding the front struts on, they are easy to spot. Undo 2 and leave the closest one on loosely. Underneath we have to deal with the wiring again, but this time its worse because the plug is behind the guard liner. You'll have to decide how much of the guard liner to remove, I undid the lower liner's top, inside and lower clips, but didn't pull it full off the guard. Same issue undoing the plug as at the rear, you need to firmly push the release clip from below while equally firmly gripping the plug body and pulling it out of  the socket. I used my fancy electrical disconnect pliers to get in there There is also one clip for the wiring, unlike at the rear I could not get behind it so just had to lever it up and out.....not in great condition to re-use in future.
    • Onto the rear lower shock mount. It's worth starting with a decent degrease to remove 10+ years of road grime, and perhaps also spray a penetrating oil on the shock lower nut. Don't forget to include the shock wiring and plug in the clean.... Deal with the wiring first; you need to release 2 clips where the wiring goes into the bracket (use long nose pliers behind the bracket to compress the clip so you can reuse it), and the rubber mount slides out, then release the plug.  I found it very hard to unplug, from underneath you can compress the tab with a screwdriver or similar, and gently but firmly pull the plug out of the socket (regular pliers may help but don't put too much pressure on the plastic. The lower mount is straightforward, 17mm nut and you can pull the shock out. As I wasn't putting a standard shock back in, I gave the car side wiring socket a generous gob of dialectric grease to keep crap out in the future. Putting the new shock in is straightforward, feed it into at least 1 of the bolt holes at the top and reach around to put a nut on it to hold it up. Then put on the other 2 top nuts loosely and put the shock onto the lower mounting bolt (you may need to lift the hub a little if the new shock is shorter). Tighten the lower nut and 3 upper nuts and you are done. In my case the BC Racing shocks came assembled for the fronts, but the rears needed to re-use the factory strut tops. For that you need spring compressors to take the pressure off the top nut (they are compressed enough when the spring can move between the top and bottom spring seats. Then a 17mm ring spanner to undo the nut while using an 8mm open spanner to stop the shaft turning (or, if you are really lucky you might get it off with a rattle gun).
    • You will now be able to lift the parcel shelf trim enough to get to the shock cover bolts; if you need to full remove the parcel shelf trim for some reason you also remove the escutcheons around the rear seat release and you will have to unplug the high stop light wiring from the boot. Next up is removal of the bracket; 6 nuts and a bolt Good news, you've finally got to the strut top! Remove the dust cover and the 3 shock mount nuts (perhaps leave 1 on lightly for now....) Same on the other side, but easier now you've done it all before
    • OK, so a bunch of trim needs to come off to get to the rear shock top mounts. Once the seat is out of the way, the plastic trim needs to come off. Remove 2 clips at the top then slide the trim towards the centre of the car to clear the lower clip Next you need to be able to lift the parcel shelf, which means you need to remove the mid dark trim around the door, and then the upper light trim above the parcel shelf. The mid trim has a clip in the middle to remove first, then lift the lowest trim off the top of the mid trim (unclips). At the top there is a hidden clip on the inner side to release first by pulling inwards, then the main clip releases by pulling the top towards the front of the car. The door seal comes off with the trim, just put them aside. The the lighter upper trim, this is easy to break to top clips so take it carefully. There is a hidden clip towards the bottom and another in the middle to release first by pulling inwards. Once they are out, there are 3 clips along the rear windscreen side of the panel that are hard to get under. This is what the rear of the panel looks like to assist:
×
×
  • Create New...