Jump to content
SAU Community

Recommended Posts

Hi guys. I'm planning to forge my Rb25det next year and looking for some advise. It appears Pistons manufactures offers differenct compression ratioed pistons such as 8:1, 8.5:1, 9:1 and 9.3:1 for the RB25det.

Refer to what I've read the RB25det NEO engine runs 9:1 compression. What would be the advantage or dis-advantage of increasing or decreasing compression ratio? I’m looking to make around 350rwkws.

Thanks for the input.

you will not utilise 350rwkw on the street.. you also wouldnt require a forged engine..
In fact you could get by on the street in an old corolla hatch back, do wonderful touring in an r31 Pintara. No one requires a forged engine or a turbo, or a sports or sporty car! Perhaps we could change from a forced induction forum to a NA Lada group. Perfect for street use. The topic question was on compression ratios, not whether it's worth building an engine to a goal. Edited by WHITE gtt
  • Like 1

For me the trade off is actual cylinder pressures vs power/torque output . The better you can make an engine inhale and exhale the lesser the boost pressure it generally needs to make a power target .

If you want a broad spread of power there has to be enough cylinder trapping ability to make torque at low revs but not choke things up at higher revs .

The old rule of thumb was that the hotter the cam profiles are the higher the static compression ratio can be . In NA land the only two things you can do to an engine to increase its output over the same rev range is to increase its capacity or its compression ratio .

What higher CRs do to a turbo engine off boost is increase the compression pressure and in theory the combustion's cylinder pressure which equates to more torque . It also tries to minimise what you lose low down with longer period cams at low revs .

My thoughts on hotted up RB25 road engines .

I'd personally go for the upper or 9.3 CR pistons because you don't go everywhere on full boost , I'd look at good mild cams even if it means changing springs so they don't coil bind .

A critical thing is TO MAKE SURE whoever builds you engine DOES NOT remove the heads quench zones and that the flat outer areas of the piston crowns are as close to the heads deck face as is safely possible . This is the way to minimise the end gasses volume in the fight against detonation . I'd also insist on having some sort of ceramic thermal barrier coating applied to the piston crowns to insulate them from combustion heat and give an extra level of detonation protection . If the funds are there I'd also ceramic coat the chamber sides of the exhaust and if possible the inlet valves . The main enemies of turbo engines are heat and detonation and heat drives detonation to a degree .

Pistons conduct their heat to the cylinder walls via their rings and valves to the guides and head via their stems . The less heat you lose the more is available to burn the fuel air charge and push the pistons down .

I also tend to think 350 Kw is a bit high and while certainly achievable the state of tune of the engine would be a bit high as in lack the every day round town poke . Its also debatable that you can get that sort of power to the ground in a RWD car and wheel spin never got anyone anywhere except broke and harassed .

Call we a wuzz but 260-280 well tuned usable Kw I think is more fun in a RWD Skyline . If your engines bottom end is in good nick I run it as it is , the right head mods cams and turbo should be able to make more than enough power on the street .

Your call , cheers A .

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now


  • Similar Content

  • Latest Posts

    • My thinking is that if the O2 sensor is shot then your entire above described experience is pure placebo.
    • Here is the mess that I made. That filler there was successful in filling dents in that area. But in the middle area. I can feel dents. And I've gone ocer it multiple times with filler. And the filler is no longer there because i accidently sanded it away. I've chased my tail on this job but this is something else lol. So I'm gonna attempt filler one more time and if it doesn't work I'll just high fill primer the door and see where the issues are because guidecoat is of no use atm.
    • Ok, so I think I sort of figured out where I went wrong. So I definitely overthinked it, and I over sanded, which is probably a large part of the problem. to fix it, I ended up tapping some spots that were likely to be high, made them low, filled them in, and I tackled small sections at a time, and it feels a lot better.    I think what confused me as well is you have the bare metal, and some spots darker and some are lighter, and when I run my finger across it, it' would feel like it's a low spot, but I think it's just a transition in different texture from metal to body filler.    When your finger's sliding on the body filler, and crosses over to the bare metal, going back and forth, it feels like it's a low spot. So I kept putting filler there and sanding, but I think it was just a transition in texture, nothing to do with the low or high spot. But the panel's feels a lot better, and I'm just going to end up priming it, and then I'll block it after with guide coat.   Ended up wasting just about all of my filler on this damn door lol  
    • -10 is plenty for running to an oil cooler. When you look at oil feeds, like power steering feeds, they're much smaller, and then just a larger hose size to move volume in less pressure. No need for -12. Even on the race cars, like Duncans, and endurance cars, most of them are all running -10 and everything works perfectly fine, temps are under control, and there's no restrictions.
    • Update: O2 sensor in my downpipe turned out to be faulty when I plugged in to the Haltech software. Was getting a "open circuit" warning. Tons of carbon buildup on it, probably from when I was running rich for a while before getting it corrected. Replaced with new unit and test drove again. The shuffle still happens, albeit far less now. I am not able to replicate it as reliably and it no longer happens at the same RPM levels as before. The only time I was able to hear it was in 5th going uphill and another time in 5th where there was no noticeable incline but applying more throttle first sped it up and then cleared it. Then once in 4th when I slightly lifted the throttle going over a bump but cleared right after. My understanding is that with the O2 sensor out, the ECU relies entirely on the MAP tune and isn't able to make its small adjustments based on the sensors reading. All in all, a big improvement, though not the silver bullet. Will try validating the actuators are set up correctly, and potentially setting up shop time to tune the boost controller on closed loop rather than the open loop it is set to now. Think if it's set up on closed loop to take the O2 reading, that should deal with these last bits. Will try to update again as I go. 
×
×
  • Create New...