Jump to content
SAU Community

Recommended Posts

http://www.skylinesaustralia.com/forums/at...achmentid=16174

This is my dyno readout. Check out that flatspot. Boost is good and even at that point so I guess timing is being pulled. Can anyone confirm?

Is there anything I can do about this?

Hi guys, a quick, simplistic explanation of how an SAFC works might help...

As the airflow into the engine increase, the AFM records this as increased voltage that the ECU sees. What an SAFC does is sit in between the AFM and the ECU and take the voltages from the AFM and either increase or decrease them depending on what you have programmed the SAFC to do. By increasing the voltage, this tricks the ecu into pumping in more fuel, you do this when the engine is running lean. By decreasing the voltage, this tricks the ecu into pumping in less fuel, you do this when the engine is running rich.

The next bit is hard to understand unless you remember that the standard ecu does not supply fuel in direct proportion to the afm voltage ie; 4 volts is not twice as much fuel as 2 volts. Engine rpm, boost and throttle position also help the ecu determine how much fuel to add.

It has been my experience that RB25's run a little lean down low in the rpm range (Nissan do this for fuel economy and emissions) and a lot rich up high (Nissan do this to protect the engine). So I have to increase the voltage (using the SAFC) up to around 3,000 rpm and decrease the voltage over 5,000 rpm.

The real problem is in the 3,000 to 5,000 rpm range as the engine comes on boost. They really need lots of fuel very quickly in this area. This can mean that you need to increase the voltage (that the ecu sees) over 5.1 volts to get the right A/F ratios. The ecu then goes into engine protection mode, rich and retarded. Past that rpm you can start leaning it out as it runs too rich, so the voltage needs to be turned down under 5.1 volts. The ecu sees this as the engine not needing protection mode any more, no more rich and retarded.

So you get good performance up to 3,000 rpm, then sluggish from 3,000 rpm to 5,000 rpm and then good performance from 5,000 rpm and over. The SAFC may not help this, in fact as explained above, it can in fact make it worse if the tuner is not switched on to this stuff.

With bent afm voltages, the ecu (tricked by the SAFC) also fires the ignition to suite the airflow it THINKS the engine is getting. This is not a good thing as you generally end up with ignition that is too far advanced in some rpm ranges.

The poor tuner has to juggle the SAFC settings, so that the A/F ratios are OK, the ecu doesn't get into rich and retard (engine protection) mode and the ignition timing is not too far advanced so as to cause detonation. My experience (I am not a good tuner) has been that this is full of compromises, sometimes you just can't win and have to reduce the boost level a bit to get even a reasonable compromise.

Keep in mind that this explanation is very simplified to make it fit in a reasonable space, the rpm's used are rough guides only and every car is different.

Hope it helps (and makes some sense).

That was quite helpful thank you. Except for one thing... I think you just told me that I'm going to have that flat spot forever.

Perhaps, seeing as I use an AVC-R, I should drop the boost at that point then bring it back up later. Or maybe not now but when I get a fuel computer.

Oh hang on. Applying that to our problems... By upping the boost we are raising the voltage of the AFM, ECU pulls timing to protect... so.... back to my last para... I should maybe drop the boost a little between 5600 rpm and 6200 rpm, thus dropping the voltage the AFM sends to the ECU, which doesn't see any problem worth protecting the engine from, therefore I should pick up power through more advanced timing.

Does this sound right?

That was quite helpful thank you.  Except for one thing... I think you just told me that I'm going to have that flat spot forever.

 

Perhaps, seeing as I use an AVC-R, I should drop the boost at that point then bring it back up later.  Or maybe not now but when I get a fuel computer.

 

Oh hang on.  Applying that to our problems... By upping the boost we are raising the voltage of the AFM, ECU pulls timing to protect... so.... back to my last para... I should maybe drop the boost a little between 5600 rpm and 6200 rpm, thus dropping the voltage the AFM sends to the ECU, which doesn't see any problem worth protecting the engine from, therefore I should pick up power through more advanced timing.

 

Does this sound right?

Yes, but keep in mind that a good tuner will work around this as best he can. You sneak up on the problem rpm range, watch the AFM voltage on the multimeter (before and after SAFC), move the boost up and down, advance and retard the CAS timing, a little more fuel correction on the SAFC, a little less correction etc etc. Eventually you end up with the best settings you can get, but it is still a COMPROMISE.

The reality is that all this fiddling takes much longer to do properly than doing a full tune on a Power FC. You keep having to go back and change things that you had already set. That's why I am not looking forward to doing it on the Stagea, I just know it is going to drive me crazy.

Stick with it though, it is worth it in the end.

I have had this problem too however I think the tune on my car is quite good (I didn't tune it). I had the flat spot too but usually on cold nights when the boost was turned up. The 2 things I did that seem to fix the problem (don't ask me how) are:

1. Changed from using optimax to bp ultimate (not as convenient for me but hey its better)

2. Keeping my ebc turned off in cold weather and only turning it on when the car is well warmed up (ie driving for at least half an hour allowing oil to get to temperature, not reading the stock temp gauge... It lies!!!)

I am not 100% on why these things have worked for me maybe someone could shed some light?

I have EXACTLY the same problems guys, so your not alone.

Except, by turbo boost at 10 psi no matter what i do. I can't wind it back at all...which is weird..

I have a Custom Split Dump Pipe, intercooler, and full exhaust.

And one mother****nig stupid ECU...

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now


  • Similar Content

  • Latest Posts

    • I know why it happened and I’m embarrassed to say but I was testing the polarity of one of the led bulb to see which side was positive with a 12v battery and that’s when it decided to fry hoping I didn’t damage anything else
    • I came here to note that is a zener diode too base on the info there. Based on that, I'd also be suspicious that replacing it, and it's likely to do the same. A lot of use cases will see it used as either voltage protection, or to create a cheap but relatively stable fixed voltage supply. That would mean it has seen more voltage than it should, and has gone into voltage melt down. If there is something else in the circuit dumping out higher than it should voltages, that needs to be found too. It's quite likely they're trying to use the Zener to limit the voltage that is hitting through to the transistor beside it, so what ever goes to the zener is likely a signal, and they're using the transistor in that circuit to amplify it. Especially as it seems they've also got a capacitor across the zener. Looks like there is meant to be something "noisy" to that zener, and what ever it was, had a melt down. Looking at that picture, it also looks like there's some solder joints that really need redoing, and it might be worth having the whole board properly inspected.  Unfortunately, without being able to stick a multimeter on it, and start tracing it all out, I'm pretty much at a loss now to help. I don't even believe I have a climate control board from an R33 around here to pull apart and see if any of the circuit appears similar to give some ideas.
    • Nah - but you won't find anything on dismantling the seats in any such thing anyway.
    • Could be. Could also be that they sit around broken more. To be fair, you almost never see one driving around. I see more R chassis GTRs than the Renault ones.
    • Yeah. Nah. This is why I said My bold for my double emphasis. We're not talking about cars tuned to the edge of det here. We're talking about normal cars. Flame propagation speed and the amount of energy required to ignite the fuel are not significant factors when running at 1500-4000 rpm, and medium to light loads, like nearly every car on the road (except twin cab utes which are driven at 6k and 100% load all the time). There is no shortage of ignition energy available in any petrol engine. If there was, we'd all be in deep shit. The calorific value, on a volume basis, is significantly different, between 98 and 91, and that turns up immediately in consumption numbers. You can see the signal easily if you control for the other variables well enough, and/or collect enough stats. As to not seeing any benefit - we had a couple of EF and EL Falcons in the company fleet back in the late 90s and early 2000s. The EEC IV ECU in those things was particularly good at adding in timing as soon as knock headroom improved, which typically came from putting in some 95 or 98. The responsiveness and power improved noticeably, and the fuel consumption dropped considerably, just from going to 95. Less delta from there to 98 - almost not noticeable, compared to the big differences seen between 91 and 95. Way back in the day, when supermarkets first started selling fuel from their own stations, I did thousands of km in FNQ in a small Toyota. I can't remember if it was a Starlet or an early Yaris. Anyway - the supermarket servos were bringing in cheap fuel from Indonesia, and the other servos were still using locally refined gear. The fuel consumption was typically at least 5%, often as much as 8% worse on the Indo shit, presumably because they had a lot more oxygenated component in the brew, and were probably barely meeting the octane spec. Around the same time or maybe a bit later (like 25 years ago), I could tell the difference between Shell 98 and BP 98, and typically preferred to only use Shell then because the Skyline ran so much better on it. Years later I found the realtionship between them had swapped, as a consequence of yet more refinery closures. So I've only used BP 98 since. Although, I must say that I could not fault the odd tank of United 98 that I've run. It's probably the same stuff. It is also very important to remember that these findings are often dependent on region. With most of the refineries in Oz now dead, there's less variability in local stuff, and he majority of our fuels are not even refined here any more anyway. It probably depends more on which SE Asian refinery is currently cheapest to operate.
×
×
  • Create New...