Jump to content
SAU Community

Recommended Posts

I'm about to fit an bosch fuelpump and I'd like to know how the factory system works before I try to improve or bypass it.

What components are involved in it's operation and where are they located? ECU pinouts? TPS? resistor, relays etc

A circuit diagram or a link to a manual that covers it would be great.

Link to comment
https://www.sau.com.au/forums/topic/86251-r32-fuelpump-speed-controller/
Share on other sites

Based on the wiring diagrams and the service manual (ie i've never actually pulled one apart) all the stock system appears to do is switch a resistor inline with the pump, thereby dropping the pump voltage. This is controlled by a signal wire from the ECU.

Not sure exactly what the ECU uses to determine when it should be at "low", possibly neutral switch or idle switch or both?

I can look up more when I get home.

Based on the wiring diagrams and the service manual (ie i've never actually pulled one apart) all the stock system appears to do is switch a resistor inline with the pump, thereby dropping the pump voltage. This is controlled by a signal wire from the ECU.

Not sure exactly what the ECU uses to determine when it should be at "low", possibly neutral switch or idle switch or both?

I can look up more when I get home.

Thanks champ, some more details would be great.

Is your service manual a book or CD?

B0oStEr,

Assuming you have an R32 GTST the ecu activates the Fuel Pump Control Modulator (FPCM) when the engine is cold. In essence the FPCM is just a switch which is earthed when the engine is cold. The FPCM is wired in parallel with the resister pack located in the engine bay on the left strut tower (adjacent to the turbo).

Basically it reduces the resistance downstream of the fuel pump when cold allowing a greater current flow and hence pressure for cold conditions (acts like cold enrichment). Once warm the FPCM circuit is open resulting in reduced current flow and hence fuel pressure.

According to the wiring diagram the non-turbo R32's don't have an FPCM but also don't have the additional resistor in line with the fuel pump. The fuel pump resistor is about 0.8 ohms.

If you disconnect the fuel pump resister (in the engine bay) and start the car when cold it should run fine whilst the FPCM is activated. Once the FPCM is switched off (when warm) the car will stall because the parallel circuit with the fuel pump resistor is also open circuited.

Please note the above applies at idle but haven't tested above idle. The GTRs operate differently again.

The above applies to R33 GTSTs but the location of the resister pack and possibly the FPCM is different. Again not sure what happens above idle.

Hope this helps.

Edited by BH_SLO32
Its also interestering to note that when you fit the PFC up it no longer uses the high/low.

Its always on high.

Still have two stage fuel pump voltage on mine with a powerFC, can hear the pump speed up when you open the throttle.

PlasticSan,

Your PowerFC is a R32 AP Engineering?

I 100% no longer have the 2 stage highlow. For example when idling then touch the accelerator.

I can always hear the fuel pump on high, plug the stock ecu back in and I've got the 2 stage back. :)

Strange.

EDIT: I've just had a quick look to try and track down what car you drive. It appears to be an R33, so.. Not an R32. :D

Edited by Cubes
B0oStEr,

......Basically it reduces the resistance downstream of the fuel pump when cold allowing a greater current flow and hence pressure for cold conditions (acts like cold enrichment). Once warm the FPCM circuit is open resulting in reduced current flow and hence fuel pressure.

I was under the impression the fuel pressure reg. controls fuel pressure. By increasing/decreasing the voltage across the pump, the FLOW capacity of the pump would increased/decreased. I'm not sure why it would be increased at idle because the coolant temp sensor combined with the ecu would increase the injector pulse width. Obviously the pump will speed up under load to increase the fuel available to the injectors

It's my understanding that the fuelpump speed control switches the pumps earth from direct to the chassis to earth through the resistor so that it reduces pump speed and noise when full capacity isn't required eg at idle and possibly at cruise.

If the pfc in the r32 doesn't operate the speed control then the decision to ditch it has been made for me.

All I need to know is how to wire my 040.

Should I run a new earth from pump directly to the chassis?

Should I upgrade the power wire by using a relay and running a new wire from the battery?

where did you guys get the servie manual for a r32 GTST from? i have been looking for one for ages

You can buy them online from the guys who translated them: http://www.jpnz.co.nz

I think there are some aussie distributors as well.

It's my understanding that the fuelpump speed control switches the pumps earth from direct to the chassis to earth through the resistor

The way its drawn in the diagrams is that the negative terminal of the puel pump is connected to two places - the dropping resistor and the FPCM. The resistor is hardwired between the pumps negative terminal and the earth. The FPCM switches on and off based on the ECU signal and effectively shorts out the dropping resistor.

Don't know why Nissan did it this way. I guess if the FPCM fails, then you can still run the pump at low speed so you can limp somewhere to get it fixed.

The easiest way to get around the whole low/high speed issue with a big bosch pump is to run dedicated 20amp wire from the battery to the new pump and use the existing wire as a trigger for a new relay. Then run a new earth wire to the chassis (or back to the battery if you are paranoid about voltage drop).

That way, whether the ecu is outputting high or low speed, the relay is still closed so the pump is getting a constant high voltage (which the bosch pumps need anyway)

I was under the impression the fuel pressure reg. controls fuel pressure. By increasing/decreasing the voltage across the pump, the FLOW capacity of the pump would increased/decreased.

Yes, the fuel pressure regulator controls the pressure in the fuel rail relative to the manifold pressure (most factory regulators are set to maintain the fuel rail pressure at about 43kPa above the manifold pressure). Increasing the speed of the fuel pump (by increasing the current draw) increases the pressure and flow of the pump. An increase in flow is only achievable by increasing the pressure because of an increase in pipe friction and fitting losses. The friction loss increases at the rate of the square of the line velocity.

Using a large capacity pump like the Bosch O44 will naturally increase the base fuel rail pressure ( >43kPa say) if the same voltage is applied to the pump. Increasing the voltage will result in an increase in the pump speed and hence pressure and flow.

When upgrading a pump you need to consider its flow capacity at a given pressure and voltage. If the standard voltage available at the pump is deemed to be inadequate the best approach is to install a dedicated power feed to the pump to minimise voltage drop. You can then install a relay and trigger it off the old fuel pump power supply as suggested by BHDAVE.

Hope this explains things.

Edited by BH_SLO32

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now


  • Similar Content

  • Latest Posts

    • OK, next the shroud needs to come off and there are a couple of tricks. Firstly, there is a loom from near the passenger side headlight to the fans, coolant temp sensor etc and there is no plug to undo.  In my case I was OK to leave the shroud on top of the engine so I just undid the passenger side fan plug and about 10 of the clips which gave enough free wire to put it aside. The fan plugs were super tight, the trick I used was a small falt screwdriver to push down on the release tab, then a larger flat screwdriver to lever the plug out of the fan unit....be careful with how much force you apply! If you need to remove the shroud altogether for some reason you will have to deal with all the plugs (tight) and clips (brittle)....good luck. I removed all of the clips and replaced them with cable ties that I will just cut next time. Also, in the Red Sport / 400R at least, the intake heat exchanger reservoir hose is bolted to the shroud in 2 places with 10mm headed bolts; so remove them (the hose stays in the car; no need to undo it at the t fittings down at the radiator lower mount. Once you've dealt with the HX hose and the wiring loom, there are 3x 10mm headed self tappers holding the top of the shroud to the radiator; remove those.   The shroud then lifts out of the bottom mounts where it sits on the radiator, up and onto the engine out of the way. Simples
    • Ok, disregard my “rate them” comment, sorry for my unrealistic input
    • OK, now we are ready to get started. You need to remove the air boxes on each side for clearance. The cover is straightforward, undo the clips on the top and lift the front cover out of the rest of the housing. If it is tight you can remove the air filters first. The rear section of the airbox is trickier. On each side you need to remove the Air flow meter wiring which is held to the airbox with a clip; you need to get behind the clip on 2 sides if you want to remove it without breaking it - unclip the harder side and pull on the clip with medium force, then unclip the easier side and it should pop out The airbox is held onto the intake hose with a spring clamp; you need to get a flat bladed screwdriver behind the spring on both sides and pop them outwards. When you have got them in the right unclipped place they will stay there and the airbox slips out pretty freely. Put a rag in the intake to prevent anything getting dropped in there, and also to prevent you seeing that the turbo seal is leaking oil (as they do). Then. The top of the radiator is held by a steel plate, it is secured by 2x10mm and 2x12mm headed bolts . Remove them and remove the plate Also grab the bushings that hold the radiator to the plate on each side so they are not lost!
    • Next, remove the upper and lower radiator hoses, both are held with a spring clamp. While you are under there, tackle the Auto Trans cooler lines.  Again both are held on with spring clamps, and as mentioned above you should cap them on the radiator side with an 8mm cap, and on the car side loop them with a length of 8mm pipe - this will stop you losing a dangerous amount of AT fluid during the rest of the job If you've been meaning to add a sender for AT trans temp, this is a great time to do it; put a sender fitting into the passenger side line as that is the inlet to the cooler/radiator.
    • Next you need to remove the intake duct (as with pretty much every job on these cars), it is a series of clips you gently remove with a flat bladed screwdriver. They do get brittle with time and can break, and I have not found a decent quality aftermarket one that fits (they are all too soft or flimsy and don't last either) but the nissan ones are a couple of bucks each (ouch).  Once the clips are off (either 8 or 10, I didn't check) you lift the intake duct out and will see the reservoirs Undo the line into the radiator side cap (some bent needle nosed piers are awesome for spring clamps) and then remove the 4x 10m nuts that hold both in place.  I didn't get these pics, but remove the line under the radiator reservoir (spring clamp again) then remove that reservoir. Then you can get at the intake reservoir, same thing, spring clamp underneath then remove it. BTW This is a great time to put in a larger (+70%) combined reservoir that AMS makes..... https://www.amsperformance.com/product/q50-q60-red-alpha-coolant-expansion-tank/ They also make an Infiniti branded and part# version if that is your thing
×
×
  • Create New...