Jump to content
SAU Community

Recommended Posts

Thats weird about the AFM, I was under the impression they flowed well and only really need changing when going for big power as the tuning resolution is a better with a Z32 item. Mine's only running about 180@wheels anyway, and I need to get the sus/chassis sorted before I need anymore :(

Mine was maxed a little over 180rwkw as well as another mates.

Perfectly normal. You can tune them up to around 220rwkw odd but its a fairly rough tune. Essentially when the afm max's out you push in enough fuel at that load point to handle the boost being run. So what occurs is say its tuned for 15psi but the afm max's out at 12psi when it hits 12psi it runs the ignition timing and enough fuel for 15psi so not optimal.

But really you never try (thats if you were good enough to be able to do it) to hold 12psi at part throttle with the afm only just maxing out so usually it goes unnoticed. :(

The Z32 allows for a fair bit more scope. Mine went from maxing the std afm out to ~4.2-4.3v on the Z32. Then ~268rwkw was ~4.7volts and now 302rwkw is high 4.9volts on occasions flat 5volts on those cold nights. So nearing its limits again. :S

Guest
This topic is now closed to further replies.



  • Similar Content

  • Latest Posts

    • For once a good news  It needed to be adjusted by that one nut and it is ok  At least something was easy But thank you very much for help. But a small issue is now(gearbox) that when the car is stationary you can hear "clinking" from gearbox so some of the bearing is 100% not that happy... It goes away once you push clutch so it is 100% gearbox. Just if you know...what that bearing could be? It sounding like "spun bearing" but it is louder.
    • Yeah, that's fine**. But the numbers you came up with are just wrong. Try it for yourself. Put in any voltage from the possible range and see what result you get. You get nonsense. ** When I say "fine", I mean, it's still shit. The very simple linear formula (slope & intercept) is shit for a sensor with a non-linear response. This is the curve, from your data above. Look at the CURVE! It's only really linear between about 30 and 90 °C. And if you used only that range to define a curve, it would be great. But you would go more and more wrong as you went to higher temps. And that is why the slope & intercept found when you use 50 and 150 as the end points is so bad halfway between those points. The real curve is a long way below the linear curve which just zips straight between the end points, like this one. You could probably use the same slope and a lower intercept, to move that straight line down, and spread the error out. But you would 5-10°C off in a lot of places. You'd need to say what temperature range you really wanted to be most right - say, 100 to 130, and plop the line closest to teh real curve in that region, which would make it quite wrong down at the lower temperatures. Let me just say that HPTuners are not being realistic in only allowing for a simple linear curve. 
    • I feel I should re-iterate. The above picture is the only option available in the software and the blurb from HP Tuners I quoted earlier is the only way to add data to it and that's the description they offer as to how to figure it out. The only fields available is the blank box after (Input/ ) and the box right before = Output. Those are the only numbers that can be entered.
    • No, your formula is arse backwards. Mine is totally different to yours, and is the one I said was bang on at 50 and 150. I'll put your data into Excel (actually it already is, chart it and fit a linear fit to it, aiming to make it evenly wrong across the whole span. But not now. Other things to do first.
    • God damnit. The only option I actually have in the software is the one that is screenshotted. I am glad that I at least got it right... for those two points. Would it actually change anything if I chose/used 80C and 120C as the two points instead? My brain wants to imagine the formula put into HPtuners would be the same equation, otherwise none of this makes sense to me, unless: 1) The formula you put into VCM Scanner/HPTuners is always linear 2) The two points/input pairs are only arbitrary to choose (as the documentation implies) IF the actual scaling of the sensor is linear. then 3) If the scaling is not linear, the two points you choose matter a great deal, because the formula will draw a line between those two points only.
×
×
  • Create New...