Jump to content
SAU Community

Recommended Posts

Marko, dont mind if I answer your question do you?

Nitriding is competely different to cryogenic freezing. Nitriding is a process where a component has nitrogen introduced into the metal surface (under high temps). Makes the surface super hard but you still retain the metallurgical properties of the orginal metal beneath the nitrided surface.

awaits splined collars + gears. preferably to fit standard GTR pumps since it's imo a waste of money buying an N1 to rip out the gears anyway.

Yeh that's something greg said the other day aswell. A std pump will be more than capable to supply enough oil at the right pressure.

that's a bit worrying.

splines are the best option imo without opting for a dry sump. using a splined system you can use a material that does not have to be as tough as the OEM system (which is very very tough but also brittle).

Ideal gears will have the plastic deformation limit quite far from the UTS. As obviously the closer the plastic limit to the UTS the more brittle it is. Personally id rather the gears round themself off than sheer in to pieces.

what material are these splines/gears going to be made off?

4140 as per below :)

Apparently.. "The collar will be made from 4340 and the gears made from 4140. Both will be nitrided and isotropically treated."

Getting all in 4140 so we can wire-cut the splines out of 1 piece.

Nitriding will penetrate the surface between 4-6thou, so it wont affect the structural strength or make them 'brittle'.

Shane,

Have you had any issues with machined parts moving after you get them nitrided?

PS: wire cutting is f**king sick!!!!!

I cant say i have mate, but these will get a final surface grind after they are treated and a double check before i'm happy to say they're good to go.

It certainly is! :)

I cant say i have mate, but these will get a final surface grind after they are treated and a double check before i'm happy to say they're good to go.

FYI: I've had a few issues with some things moving post nitriding. Final grind post treatment is the go! :) (just dont break through the lovely super hard surface).

Generally things must be surface ground after nitriding due to the surface expanding unevenly. That is the gas can be absorbed at different rates in the material. However given that these are gears and not a bearing surface (like a crank) it should not matter as much.

Cryogenic treatment is excellent in making material stronger. So you have a good mix. Nitriding does nothing for strength but makes the surface very tough and cryogenics does nothing for toughness but adds strength (re-aligns the grains correctly i believe)

potentially Allows obviously a more plyable material to be used which IMO is a good thing when it comes to gears.

GTR standard pumps would be the go imo! Looking forward to these, hopefully a cheaper cure to this problem.

PS: How many splines are there going to be (sorry if this was mentioned earlier also) As obviously the more splines (think 10 splines per 25mm) the larger the surface area but with that comes smaller splines which requires smaller tolerances which may not be suited for the heat expansion that these gears will come under during the operation of an engine. Looking at the Supra design posted earlier in this thread would be a good way to go, not very many splines but it's clearly a tried and proven logic.

PS: If possible 4340 is the superior material compared to 4140 but obviously it does come down to the manufacturing processes s available.

Edited by GT-RZ

Excellent thread this one!

Gotta be one of the best ones in a long time, a problem came up and with the bouncing around of ideas, a possible but more then likely probable solution has been achieved and not only that, its actually going ahead rather then just talk.

Kudos to Greg, Shane and everyone else who chipped in.

Need more informative and potential RB development threads like this rather then same old same old.

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now



  • Similar Content

  • Latest Posts

    • Surely somebody has one in VIC. Have you asked at any shops?  Is this the yearly inspection or did you get a canary?
    • This is where I share pain with you, @Duncan. The move to change so many cooling system pieces to plastic is a killer! Plastic end tanks and a few plastic hose flanges on my car's fail after so little time.  Curious about the need for a bigger rad, is that just for long sessions in the summer or because the car generally needs more cooling?
    • So, that is it! It is a pretty expensive process with the ATF costing 50-100 per 5 litres, and a mechanic will probably charge plenty because they don't want to do it. Still, considering how dirty my fluid was at 120,000klm I think it would be worth doing more like every 80,000 to keep the trans happy, they are very expensive to replace. The job is not that hard if you have the specialist tools so you can save a bit of money and do it yourself!
    • OK, onto filling. So I don't really have any pics, but will describe the process as best I can. The USDM workshop manual also covers it from TM-285 onwards. First, make sure the drain plug (17mm) is snug. Not too tight yet because it is coming off again. Note it does have a copper washer that you could replace or anneal (heat up with a blow torch) to seal nicely. Remove the fill plug, which has an inhex (I think it was 6mm but didn't check). Then, screw in the fill fitting, making sure it has a suitable o-ring (mine came without but I think it is meant to be supplied). It is important that you only screw it in hand tight. I didn't get a good pic of it, but the fill plug leads to a tube about 70mm long inside the transmission. This sets the factory level for fluid in the trans (above the join line for the pan!) and will take about 3l to fill. You then need to connect your fluid pump to the fitting via a hose, and pump in whatever amount of fluid you removed (maybe 3 litres, in my case 7 litres). If you put in more than 3l, it will spill out when you remove the fitting, so do quickly and with a drain pan underneath. Once you have pumped in the required amount of clean ATF, you start the engine and run it for 3 minutes to let the fluid circulate. Don't run it longer and if possible check the fluid temp is under 40oC (Ecutek shows Auto Trans Fluid temp now, or you could use an infrared temp gun on the bottom of the pan). The manual stresses the bit about fluid temperature because it expands when hot an might result in an underfil. So from here, the factory manual says to do the "spill and fill" again, and I did. That is, put an oil pan under the drain plug and undo it with a 17mm spanner, then watch your expensive fluid fall back out again, you should get about 3 litres.  Then, put the drain plug back in, pump 3 litres back in through the fill plug with the fitting and pump, disconnect the fill fitting and replace the fill plug, start the car and run for another 3 minutes (making sure the temp is still under 40oC). The manual then asks for a 3rd "spill and fill" just like above. I also did that and so had put 13l in by now.  This time they want you to keep the engine running and run the transmission through R and D (I hope the wheels are still off the ground!) for a while, and allow the trans temp to get to 40oC, then engine off. Finally, back under the car and undo the fill plug to let the overfill drain out; it will stop running when fluid is at the top of the levelling tube. According to the factory, that is job done! Post that, I reconnected the fill fitting and pumped in an extra 0.5l. AMS says 1.5l overfill is safe, but I started with less to see how it goes, I will add another 1.0 litres later if I'm still not happy with the hot shifts.
    • OK, so regardless of whether you did Step 1 - Spill Step 2 - Trans pan removal Step 3 - TCM removal we are on to the clean and refill. First, have a good look at the oil pan. While you might see dirty oil and some carbony build up (I did), what you don't want to see is any metal particles on the magnets, or sparkles in the oil (thankfully not). Give it all a good clean, particularly the magnets, and put the new gasket on if you have one (or, just cross your fingers) Replacement of the Valve body (if you removed it) is the "reverse of assembly". Thread the electrical socket back up through the trans case, hold the valve body up and put in the bolts you removed, with the correct lengths in the correct locations Torque for the bolts in 8Nm only so I hope you have that torque wrench handy (it feels really loose). Plug the output speed sensor back in and clip the wiring into the 2 clips, replace the spring clip on the TCM socket and plug it back into the car loom. For the pan, the workshop manual states the following order: Again, the torque is 8Nm only.
×
×
  • Create New...