Jump to content
SAU Community

Recommended Posts

couldn't agree more volume of air and fuel make power

a big turbo @ 10psi will make more power the a small turbo @ 20psi

psi don't mean shit its the volume/mass/amount (what ever you want to call it)

of oxygen that counts

hence you make more power on a cold damp night than you would on a hot dry day because the air is denser (more partials of oxygen in the same volume of air)

couldn't agree more volume of air and fuel make power

a big turbo @ 10psi will make more power the a small turbo @ 20psi

psi don't mean shit its the volume/mass/amount (what ever you want to call it)

of oxygen that counts

hence you make more power on a cold damp night than you would on a hot dry day because the air is denser (more partials of oxygen in the same volume of air)

Well, you'd have to look at the compressor map of those turbos, because even a turbo 50% bigger wouldn't make the same air flow if it is at half the boost, but generally you are right, it comes down to air flow.

The temperature of the air is a very interesting factor, because most engines measure it BEFORE the intercooler and turbo, so it does assume certain variables after that fact. The AFM measures flow X temperature X pressure all at once, and changing any of those by too much can lean out the mixture (but that is easily fixed by tuning).

Back onto topic, 2 turbos can be more efficient than 1 turbo in some circumstances, it really is impossible to generalise.

The temperature of the air is a very interesting factor, because most engines measure it BEFORE the intercooler and turbo, so it does assume certain variables after that fact. The AFM measures flow X temperature X pressure all at once, and changing any of those by too much can lean out the mixture (but that is easily fixed by tuning).

As far as I am aware a skyline AFM (and every AFM i've ever dealt with) only measures the amount of air passing through it in kg/h, doesn't have anything to do with temperature or pressure.

Edited by PM-R33
As far as I am aware a skyline AFM (and every AFM i've ever dealt with) only measures the amount of air passing through it in kg/h, doesn't have anything to do with temperature or pressure.

The AFM is just a heated piece of metal. The 'air flow metering' is simply based on how much it is cooled. Therefore, differences in flow rate, temperature, and pressure, will ALL affect it. I'm not an engineer and don't know the specifics or how much it does effect things, but I do know this much :(

couldn't agree more volume of air and fuel make power

a big turbo @ 10psi will make more power the a small turbo @ 20psi

psi don't mean shit its the volume/mass/amount (what ever you want to call it)

of oxygen that counts

hence you make more power on a cold damp night than you would on a hot dry day because the air is denser (more partials of oxygen in the same volume of air)

that isn't entirely true. a lot of the reason why the small turbo will make less power is because it is restricting the exhaust gas so the engine is having to work harder to push the exhaust gases out of the cylinder as there is more restriction (and therefore higher pressure) in the exhaust manifold. once you reduce the restriction on the exhaust side then it can push the exhaust gases out easier and won't have as much resistance pushing against the piston. if you take 2 turbos with the same size exhaust housing but with different compressor housings then compare how much power they both make at the same pressure there won't be too much in it. the reason being that the pressure you see on a boost gauge is caused by the compressor ramming in more air than the engine can injest, thus pressurising the system. also you will have the intercooler adding restriction and that is why you will often see them saying that they only cause a 1psi drop at 15psi or something like that. that means that on the turbo side of the intercooler the pressure will be 1psi higher than on the plenum side. that is reguardless of what is pumping the air because the intercooler will only flow a certain amount of air before the pressure starts to increase inside the core. pressure is a byproduct of flow. the more air you flow the higher the pressure will be. if you keep all variables the same (so in the case of an engine, keep all the same intercooler, piping, exhaust and size of the exhaust housing on the turbo) you can't really alter the amount of air flowing through something without altering the pressure.

The AFM is just a heated piece of metal. The 'air flow metering' is simply based on how much it is cooled. Therefore, differences in flow rate, temperature, and pressure, will ALL affect it. I'm not an engineer and don't know the specifics or how much it does effect things, but I do know this much :P

Yeah i know how an airflow metre works :rofl: I know im splitting hairs, but you said "The AFM measures flow X temperature X pressure all at once", technically it doesn't do all that as it cant distinguish between them, its all just one thing as you said, the rate of cooling from the airflow.

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now


  • Similar Content

  • Latest Posts

    • just an update to this, poor man pays twice  Tried sanding down the pulleys but it didnt do the trick. Chucked another second hand alternator in the na car which I got for free off my mate and its fixed the squelling. Must have been unlucky with the bearings.    As for my turbo car, I managed to pick up a cwc rb alternator conversion bracket + LS alternator for 250 off marketplace, looked to be in really good nick. Installed it , started the car and its not charging the battery.... ( Im not good with auto elec stuff so im not sure if this was all I needed to do but I verified such by using a multimeter on the battery when the engine was running and I was only getting 12.2v )   I had to modify the earth strap for the new LS alternator , factory earth strap was a 10mm bolt which did not fit the bolt on the LS alternator which was double the size so I cut it off , went to repco bought some ring terminals that fit, crimped it onto the old earth strap and bolted it up to the alternator , started the car and same issue. Ran like shit and was reading 12.2 at the battery.  For a "plug and play" advertised kit thats not very plug and play but alas.  My question is , am I missing something ? Ive been reading that some people recommend upgrading the stock 80 amp alternator fuse to a 140 amp but I dont see how that would stop the alternator charging especially at idle not under load.  Regardless ive pulled it out and am going to get it bench tested by an auto elec tomorrow but it would be handy to know if ive missed something silly or have done something wrong.   
    • My wild guess is that you have popped off an intake pipe....check all of the hoses between the turbo and the throttle for splits or loose clamps.
    • Awesome, thanks for sharing!
    • To provide more specific help, more information is needed. What Android screen? What is its wiring diagram? Does the car's wiring have power at any required BAT and ACC wires, and is the loom's earth good?
    • So, now all you need to do is connect the 2 or 3x 12v feeds into the unit to permanent 12v, ACC 12V and IGN 12V that you can find in the spot behind the stereo, and the earth, and then it will switch on with the car.
×
×
  • Create New...