Jump to content
SAU Community

Recommended Posts

Hah, realized where I went wrong. Just asked dad what the deal was and he told me his prop tacho in the glider is from another aircraft which used a different gear ratio, so this one's readings are well off :blush: He knows the equation to work out it's true speed, but really he just uses it to monitor the 'norm' for prop-slip.

So my example is not as relevant as I thought, but I think the main point of the strength of nylon is still valid.

  • Replies 54
  • Created
  • Last Reply

Top Posters In This Topic

I just calculated the tip speed of a 1m diameter prop at 200,000 rpm at over 600 km/h. So there is definitely something not right there.

Care to calculate the tip-speed of a 1.63 meter diameter prop, alt. of 10,000 feet; engine speed of 5000rpm, prop pitch of 137.6cm and a gear ratio of 1.18? Those are the specs of dad's Stemme. Dad gave me the formula to work it out, but I tried it and got lost lol.

I must be on drugs. I wouldn't trust the 600 km/h speed I reported earlier. I did it in Excel and it looked good and so I posted and then closed the spreadsheet. So to answer your question I had to redo the calc and the numbers came out quite different. I must have divided something when I was supposed to multiply it I think. Anyway, the answer for 80000rpm by 1m prop is more like 15000 km/h, which is of course totally stupid. For your 1.63m propeller at 5000 rpm x 1.18 (=5900 rpm) the tip speed is about 1800 km/h. Which is also silly, because supersonic tip speed are not kosher. Even if I got your gear ratio back to front and the prop speed is only 5000 / 1.18 (=4237 rpm), then the tip speed is still 1300 km/h. I don't like that answer either. The altitude and the prop pitch don't impact on the tip speed. Tip speed is just how many times per second the tip completes each circle, multiplied by the length of the circumference. 1.63m diameter is 5.1m around. 5900 rpm is 98.3 revs per second. Multiply number of turns by distance and you get 503 m/s tip speed, which is 1812km/h. Nasty. Now, if by chance I read your gear ratio really wrong, and there is actually an 18:1 reduction from engine to prop shaft, then the tip speed is 85 km/h, which seems really far too low. I went and googled up a tip speed calculator, http://www.pponk.com/HTML%20PAGES/propcalc.html which seems to suggest that 0.9 mach is the optimum tip speed. I put your dimensions into it and it came back with >900mph (mach 1.5) as the tip speed (at 5900 rpm) and said don't do it. So that agrees with my calcs. I don't know what to say about your tip speed. I don't like the answer, so maybe one of the inputs is wrong.

Care to calculate the tip-speed of a 1.63 meter diameter prop, alt. of 10,000 feet; engine speed of 5000rpm, prop pitch of 137.6cm and a gear ratio of 1.18? Those are the specs of dad's Stemme. Dad gave me the formula to work it out, but I tried it and got lost lol.

Vtip = πdn

Where d is the diameter in metres, and n is the angular velocity (RPM).

=3.14 * 1.63 * (5000 * 1.18)

=30212.69m/min

=1812.76km/h

1812.76km/h at the tip on a 1.63m prop at 5000 engine RPM's through a 1.18x gearbox in a standard atmosphere. You sure about those figures?? When a prop is operated so it's tip exceeds mach ~0.88 (934km/h), it's efficiency starts to go downhill due to the loss of laminar airflow over the aerofoil; shockwaves that interrupt the thrust being generated. Back to the drawing board for you Hanaldo! lol

Just for shits'n, I took the liberty of calculating the same prop's tip speed, but at 200000RPM.....

Over Mach 49. :3

I must be on drugs. I wouldn't trust the 600 km/h speed I reported earlier. I did it in Excel and it looked good and so I posted and then closed the spreadsheet. So to answer your question I had to redo the calc and the numbers came out quite different. I must have divided something when I was supposed to multiply it I think. Anyway, the answer for 80000rpm by 1m prop is more like 15000 km/h, which is of course totally stupid. For your 1.63m propeller at 5000 rpm x 1.18 (=5900 rpm) the tip speed is about 1800 km/h. Which is also silly, because supersonic tip speed are not kosher. Even if I got your gear ratio back to front and the prop speed is only 5000 / 1.18 (=4237 rpm), then the tip speed is still 1300 km/h. I don't like that answer either. The altitude and the prop pitch don't impact on the tip speed. Tip speed is just how many times per second the tip completes each circle, multiplied by the length of the circumference. 1.63m diameter is 5.1m around. 5900 rpm is 98.3 revs per second. Multiply number of turns by distance and you get 503 m/s tip speed, which is 1812km/h. Nasty. Now, if by chance I read your gear ratio really wrong, and there is actually an 18:1 reduction from engine to prop shaft, then the tip speed is 85 km/h, which seems really far too low. I went and googled up a tip speed calculator, http://www.pponk.com...S/propcalc.html which seems to suggest that 0.9 mach is the optimum tip speed. I put your dimensions into it and it came back with >900mph (mach 1.5) as the tip speed (at 5900 rpm) and said don't do it. So that agrees with my calcs. I don't know what to say about your tip speed. I don't like the answer, so maybe one of the inputs is wrong.

You're correct, altitude only comes into when trying to work out tip mach speed.

I just googled the Stemme 10 specs, and the manual gives the same specs as I gave you. Maybe there is another gear set somewhere along the line which gives another reduction that isn't mentioned? I have no idea, I'm confused now :/ I know for a fact the engine is revved to 5000rpm on take-off, that was drilled into me when I was learning to fly it. Cruising rpm is more around 2400.

the rotax engine itself has an integral reduction gear too...i mentioned it earlier was 1:2.2 something

so the prop will be running through 2 gearboxes, 1 at the motor and 1 in the prop hub

The Rotax is out of the S10 VT, dad has an S10 VH-GTS which uses a Limbach L2400 motor. The only specs I can find on that motor are from a Stemme S10-V, but that's an L-2400 EB1.AD motor which is different to dad's. I can guarantee that at 3400rpm, there is no way dad's glider would get off the ground.

In any case the RPM is quite irrelevant to the earlier point; would everyone here agree that 90% of mach 1 is pretty stressful operating conditions?

Because I haven't seen it in real life I am going to call you a wanker and not believe you.

not really - I still ahven't seen a plastic compressor, even though I have visually inspected a few GTT and GTS-T turbos.

If you want to keep crapping on about shit thinking your winning, good for you. Whatever makes you sleep better at night.

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now



  • Similar Content

  • Latest Posts

    • The 296mm rotors are the R33 turbo brakes. The 310mm rotors are the R34 turbo brakes. The calipers are nearly the same, but not. They're the same caliper but the R34 caliper has longer legs so that it sits out far enough to go over the rotor. The pads are the same for both. When you say, "I bough tsome EBC"....did you just mean pads? Or rotors? 310mm rotors fit under 17" wheels. There may be some wheels without enough clearance though. I can't fit my fingers between the barrel of my wheel and the "corners" of my R34 calipers, but there is plenty of room behind the spokes. This is on Enkei RPF1. You can fit 324mm rotors inside a 17" wheel, but I'd be willing to bet that it would be close to impossible with the Nissan/Sumitomo caliper (using an adapter, of course), because the Sumitomo caliper is fatter than the Brembo caliper that is supposed to go on the 324mm rotors.
    • Hi. Can someone tell me what brakes(and mainly WHERE) can i buy brakes on R34 GTT? I bought some EBC which SHOULD go on my car(i have GT but it has GTT brakes) but it does not fit, Brakes are "too" small(296mm) Are 310mm be good or? I have 17 inch wheel so no "big boys" but for me driving i just need one that fits and i can get here in EU/Czech.
    • Since winter isn't that harsh anymore in Poland, i will definetely drive it 365 days a year 😉. But if the snow hits i will try it for sure and let U know. Only swap i am planning to do is of course R34 GTR front 😍.
    • Hey. Very valuable information about pitwork, I will pay attention when buying any consumable parts 🙏 As for the carpets - I got a handful of information from nengun, from which it appears that indeed the carpets for the driver's side are OEM. They are not able to show me any pictures due to the long chain of different sales entities but after I place the order, as soon as the goods arrive at the nengun warehouse from which they will send the shipment to me they can send me photos and if my purchase differs from OEM I can immediately return it / cancel the purchase. I think I will give it a try 😉. Of course i'll let you know what's what as soon as i get them P.s. I know the topic is not relevant to the thread, but both nengun and amayama have these SICK 😍 trunk room lamps available. Do you know anyone who ordered them? I need to have one in my car
    • I've managed to find this: Nissan_Stagea_AutechVersion260RS (1).pdf
×
×
  • Create New...