Jump to content
SAU Community

Recommended Posts

The exhaust gases are at their highest temperature as they leave the exhaust port and enter the manifold. They cool as they flow through the manifold because they transfer heat to the manifold and the manifold loses heat to the surrounding environment.

Thus, inevitably, the exhaust gases are cooler as they enter the turbo compared to when they entered the exhaust manifold.

So, yes, the exhaust manifold can easily get as hot as the turbine housing.

Having said that, you will generally see the highest temperatures where the exhaust gases have to slow down or they are concentrated into one area - which is usually the collector on the manifold and in the turbine housing, because the gases slam into the metal at those places, increasing the convective heat transfer coefficient and transferring even more heat to the metal than they might just flowing past elsewhere.

Exhaust manifold heat shields are a good idea - certainly for the stock manifold they are there from the factory. People seldom have anything like that on a tubular manifold because they are hard to achieve. Some might wrap a tube manifold with fibreglass tape - but this has a reputation of leading to cracked welds. The best case is generally to put ceramic coating onto the manifold to prevent it getting as hot (internal coating) and radiating/convecting heat into the bay (external coating).

All the real heat from a turbo comes from the exhaust side. The gases entering are at ~800-900°C and the steel/iron gets nearly that hot. The compressor side is only going to heat the charge air up to <<200°C (typically not much more than 100°C). So that's nothing, by comparison. The compressor is not a significant source of engine bay heat.

1 hour ago, GTSBoy said:

The exhaust gases are at their highest temperature as they leave the exhaust port and enter the manifold. They cool as they flow through the manifold because they transfer heat to the manifold and the manifold loses heat to the surrounding environment.

Thus, inevitably, the exhaust gases are cooler as they enter the turbo compared to when they entered the exhaust manifold.

So, yes, the exhaust manifold can easily get as hot as the turbine housing.

Having said that, you will generally see the highest temperatures where the exhaust gases have to slow down or they are concentrated into one area - which is usually the collector on the manifold and in the turbine housing, because the gases slam into the metal at those places, increasing the convective heat transfer coefficient and transferring even more heat to the metal than they might just flowing past elsewhere.

Exhaust manifold heat shields are a good idea - certainly for the stock manifold they are there from the factory. People seldom have anything like that on a tubular manifold because they are hard to achieve. Some might wrap a tube manifold with fibreglass tape - but this has a reputation of leading to cracked welds. The best case is generally to put ceramic coating onto the manifold to prevent it getting as hot (internal coating) and radiating/convecting heat into the bay (external coating).

All the real heat from a turbo comes from the exhaust side. The gases entering are at ~800-900°C and the steel/iron gets nearly that hot. The compressor side is only going to heat the charge air up to <<200°C (typically not much more than 100°C). So that's nothing, by comparison. The compressor is not a significant source of engine bay heat.

I've seen some stuff like this as well, not sure if it's a good idea or anything but it does have more standoff from the piping than the conventional fiberglass wrap:

image.thumb.jpeg.723c60ed80654e4de1f004c5413538d0.jpeg

 

  • Thanks 1

Yeah the ACL and similar formable heat shielding materials are really nice. But most people do not have the patience or talent to do a good job like that.

Almost anything is better than nothing though. Even if you didn't form it closely like that and just had a slab of it slipped in between the manifold and somewhere/thing you wanted to protect, you would gain benefit.

There has to be a market opportunity for people like Artec to make formed heatshields to suit their cast manifolds. The fact that they are cast means that they are consistently the exact same dimensions and they could add bosses to the castings like you see on stockers to allow heat shields to be firmly attached yet floating away from the manifold itself.

I have a 6 boost manifold and it has loads of bends etc. turbo has a cover however manifold doesn’t so I started to wrap what I could without taking turbo off. Very restricted area

 

are you stating wrapping could lead to cracking weld? Is that because heat is retained? 
 

i have a exhaust gas temp right after turbo and it hits 700degree or 800 at times.

 

there are areas which is impossible to reach with fibre glass cloth. Is there anything I could apply such as the photo shared earlier which would formulate around exhaust pipe in difficult to reach areas, sort of like aluminium foil flexible to shape it in place?

 

i think from earlier reply you mentioned acl? Is this what you meant?

 

https://www.nstparts.com/product/acl-heat-shield-700x275

 

 

photo of my engine bay

 

https://ibb.co/9grHsMN
https://ibb.co/bXC8KRM
https://ibb.co/KV3kGZc

 

I am trying to cover bottom of the exhaust manifold which joins the turbo. Only way is to take turbo and possible manifold out as it also touches the engine mount which I don’t fancy doing

Edited by drifter17a
47 minutes ago, drifter17a said:

are you stating wrapping could lead to cracking weld? Is that because heat is retained? 

yes

48 minutes ago, drifter17a said:

Is there anything I could apply such as the photo shared earlier which would formulate around exhaust pipe in difficult to reach areas, sort of like aluminium foil flexible to shape it in place?

yes

this

48 minutes ago, drifter17a said:

https://www.nstparts.com/product/acl-heat-shield-700x275

 

48 minutes ago, drifter17a said:

i think from earlier reply you mentioned acl? Is this what you meant?

yes

 

  • Thanks 1

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now


  • Similar Content

  • Latest Posts

    • Reading through the engine service manual their advice is do a cylinder balance test. Unplug one injector at a time and see if the idle drops a consistent RPM. You can also do this using a Consult cable which is easier. They also call for unplugging the power transistor, then with the engine off and the fuel rail unhooked from the manifold verifying that you have good fuel flow (even injection, no dripping/leaks, etc) when you twist the CAS by hand. Also verify the spark by pulling the spark plugs and allowing the plugs to ground and turning the CAS by hand. I would also start doing the sensor checks and idle valve checks in service manual. Make sure the MAF tests reasonably, the intake air regulator is sane, etc. You may have to get new spark plugs.
    • This sounds very old of me, however since buying the Tiguan shit box, my view on shit boxes have changed.
    • I've looked up the parts number (41011AL501). It's around $700 OEM. Usually our Infiniti G35 here in Canada have interchangeable parts with my Stagea but the parts number are not the same. I have looked around and it seems the JDM 2005 V35 Skyline (which is the same as our G35) has the same caliper but I cannot confirm. And I can't find a repair kit. The inner brake pads drags on the rotor, seems to be rusty piston. Thanks for the info by the way
    • This coupled with 6-9 speed autos with ridiculously short gearing is why these modern shitbox cars always seem so fast off the line. If it wasn't for those things, Raptors would not seem fast. The problem we have is there is a driveability gap between a more gentle take off and a wheelspinning sideways launch. The difference between ankle flex required to achieve one and ankle flex required to achieve the other is about 0.5°.
    • Yeah I think I'm also with the opposite here. It's 'hard to keep up with traffic' because in the real world I'm accelerating with 15% throttle and they are pinning it. It feels like I'm being an overt dickhead at anything above 15% throttle, so the car sounds like I'm being an overt dickhead to keep up with/get ahead of traffic when I'm really just trying to drive with traffic. There would be no issue 'keeping up with traffic' if we used the same level of throttle input/aggression to drive around. People really do just drive around with their foot nearly pinned in econoboxes.
×
×
  • Create New...