Jump to content
SAU Community

Recommended Posts

Hi all,

Restoring r33 series 1 rb25det. All the heater hoses were on their way out, have replaced them and put it all back together. After testing I noticed a small leak from behind the head on the actual metal water line to the turbo when cars warm. I tried running a longer hose over it but it kept leaking...  

I am about to take the (stock) manifold off again😔 to change the water line does any one have any lines they recommend? I was looking at Aeroflow Turbo Oil & Water Line Set but not sure what everyone else recommends. Car is completely stock but want to upgrade turbo eventually. it looks like ill have to disconnect a lot just to replace these lines so if there's anything else recommended to do please let me know.

Thank you in advance!

Edited by jtha7

Found this as well which looks like it has the correct fittings? Not 100% sure on what to get:

 

Screenshot_20250729_230425_Brave.thumb.jpg.4274440c0488578e3474b102318de642.jpg

Edited by jtha7

One thing I can tell you is, do it properly the first time. If you encounter unexpected problems just let the car sit for a week or two if you have to get some other parts or figure stuff out. 

I'd have said go and use as many OEM parts as possible but since you want to change the turbo later on a custom kit is probably the better choice. Since I have no experience with RB25 just compare parts diagrams and images before buying a line kit and it should be easy to see if it has everything you need.

Amayama has very good parts diagrams and part number lists, that is what I used a bunch to figure out what I might need.

And don't forget to plan ahead and possibly renew other stuff that's easy to get to while you're in there doing the turbo lines.

Happy wrenching

  • Thanks 1
On 29/07/2025 at 5:47 PM, jtha7 said:

I am about to take the (stock) manifold off again😔 to change the water line does any one have any lines they recommend? I was looking at Aeroflow Turbo Oil & Water Line Set but not sure what everyone else recommends. Car is completely stock but want to upgrade turbo eventually. it looks like ill have to disconnect a lot just to replace these lines so if there's anything else recommended to do please let me know.

Thank you in advance!

Any advice? Yes. Learn to make your own lines, they're actually pretty easy and you can make hard lines, flexi lines, whatever you like, perfectly fitting to your application. 

https://www.efisolutions.com.au/   

sell a huge range of hoses, fittings, everything you need. You might have to outlay a bit in the beginning (eg I bought a 5 metre roll of stainless tubing that I've used less than a metre of) but still cheaper than buying premade shite hoses that sort-of fit.

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now


  • Similar Content

  • Latest Posts

    • Yeah, that's fine**. But the numbers you came up with are just wrong. Try it for yourself. Put in any voltage from the possible range and see what result you get. You get nonsense. ** When I say "fine", I mean, it's still shit. The very simple linear formula (slope & intercept) is shit for a sensor with a non-linear response. This is the curve, from your data above. Look at the CURVE! It's only really linear between about 30 and 90 °C. And if you used only that range to define a curve, it would be great. But you would go more and more wrong as you went to higher temps. And that is why the slope & intercept found when you use 50 and 150 as the end points is so bad halfway between those points. The real curve is a long way below the linear curve which just zips straight between the end points, like this one. You could probably use the same slope and a lower intercept, to move that straight line down, and spread the error out. But you would 5-10°C off in a lot of places. You'd need to say what temperature range you really wanted to be most right - say, 100 to 130, and plop the line closest to teh real curve in that region, which would make it quite wrong down at the lower temperatures. Let me just say that HPTuners are not being realistic in only allowing for a simple linear curve. 
    • I feel I should re-iterate. The above picture is the only option available in the software and the blurb from HP Tuners I quoted earlier is the only way to add data to it and that's the description they offer as to how to figure it out. The only fields available is the blank box after (Input/ ) and the box right before = Output. Those are the only numbers that can be entered.
    • No, your formula is arse backwards. Mine is totally different to yours, and is the one I said was bang on at 50 and 150. I'll put your data into Excel (actually it already is, chart it and fit a linear fit to it, aiming to make it evenly wrong across the whole span. But not now. Other things to do first.
    • God damnit. The only option I actually have in the software is the one that is screenshotted. I am glad that I at least got it right... for those two points. Would it actually change anything if I chose/used 80C and 120C as the two points instead? My brain wants to imagine the formula put into HPtuners would be the same equation, otherwise none of this makes sense to me, unless: 1) The formula you put into VCM Scanner/HPTuners is always linear 2) The two points/input pairs are only arbitrary to choose (as the documentation implies) IF the actual scaling of the sensor is linear. then 3) If the scaling is not linear, the two points you choose matter a great deal, because the formula will draw a line between those two points only.
    • Nah, that is hella wrong. If I do a simple linear between 150°C (0.407v) and 50°C (2.98v) I get the formula Temperature = -38.8651*voltage + 165.8181 It is perfectly correct at 50 and 150, but it is as much as 20° out in the region of 110°C, because the actual data is significantly non-linear there. It is no more than 4° out down at the lowest temperatures, but is is seriously shit almost everywhere. I cannot believe that the instruction is to do a 2 point linear fit. I would say the method I used previously would have to be better.
×
×
  • Create New...