Jump to content
SAU Community

Recommended Posts

Hi guys, here is one I prepared earlier using an example of 4 intercooler setups and pipework we have actually used;

1. R33 GTST Standard Intercooler and standard R32 GTST pipework

150 rwkw = 27 lbs of air per min @ 13 litres of i/c & pipework

2. Supra Intercooler and matching 63mm pipework

180 rwkw = 30 lbs of air per min @ 15 litres of i/c & pipework

3. Standard GTR GTR and 63/75mm pipework

250 rwkw = 40 lbs of air per min @ 21 litres of i/c & pipework

4. Greddy 600 X 300 X 115 and 80 mm pipework

400 rwkw = 60 lbs of air per min @ 28 litres of i/c & pipework

If you look at the numbers you can see that the rate of air flow and the volume of I/C and pipework have a fixed relationship (27 = 13 , 30 = 15 , 40 = 21 , 60 = 28). This is not an accident, I designed it that way. The reason is I wanted to keep the throttle response as close what it was when the car had 150 rwkw, because I though that was very nice response.

The theory I followed was, the more power the engine produces the more air it needs. Thus if I keep the increase in the volume of air inside the inlet system in the same proportion as the power increase, then the throttle response should stay the same. This is based on the engine using the air in the same time frame.

So when people say they fitted a FMIC and have not noticed any less throttle response, my response would be, that is what I would expect. As long as they went from 150 rwkw to 180 rwkw. On the other hand, if there was no power increase then it would be simply physically impossible for there to be no decrease in throttle response.

The problem of poor throttle response arrises when you have a 220 rwkw engine with a 28 litre inlet system. This is something I see way to often.

Hope that makes some sense:cheers:

so if i'm making around 200 odd kwatw, would a gtr i/c be ok? or will i lose throttle response?

Stick to 63 mm pipework for the feed from the turbo to the intercooler and 75mm from the intercooler to the throttle body. Then apply the 120 degree bend at the throttle body design of pipework. You will end up around 19 litres which will give the appropriate airflow versus inlet volume ratio for 200 rwkw:cheers:

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now


  • Similar Content

  • Latest Posts

    • Yup. You can get creative and make a sort of "bracket" with cable ties. Put 2 around the sender with a third passing underneath them strapped down against the sender. Then that third one is able to be passed through some hole at right angles to the orientation of the sender. Or some variation on the theme. Yes.... ummm, with caveats? I mean, the sender is BSP and you would likely have AN stuff on the hose, so yes, there would be the adapter you mention. But the block end will either be 1/8 NPT if that thread is still OK in there, or you can drill and tap it out to 1/4 BSP or NPT and use appropriate adapter there. As it stands, your mention of 1/8 BSPT male seems... wrong for the 1/8 NPT female it has to go into. The hose will be better, because even with the bush, the mass of the sender will be "hanging" off a hard threaded connection and will add some stress/strain to that. It might fail in the future. The hose eliminates almost all such risk - but adds in several more threaded connections to leak from! It really should be tapered, but it looks very long in that photo with no taper visible. If you have it in hand you should be able to see if it tapered or not. There technically is no possibility of a mechanical seal with a parallel male in a parallel female, so it is hard to believe that it is parallel male, but weirder things have happened. Maybe it's meant to seat on some surface when screwed in on the original installation? Anyway, at that thread size, parallel in parallel, with tape and goop, will seal just fine.
    • How do you propose I cable tie this: To something securely? Is it really just a case of finding a couple of holes and ziptying it there so it never goes flying or starts dangling around, more or less? Then run a 1/8 BSP Female to [hose adapter of choice?/AN?] and then the opposing fitting at the bush-into-oil-block end? being the hose-into-realistically likely a 1/8 BSPT male) Is this going to provide any real benefit over using a stainless/steel 1/4 to 1/8 BSPT reducing bush? I am making the assumption the OEM sender is BSPT not BSPP/BSP
    • I fashioned a ramp out of a couple of pieces of 140x35 lumber, to get the bumper up slightly, and then one of these is what I use
    • I wouldn't worry about dissimilar metal corrosion, should you just buy/make a steel replacement. There will be thread tape and sealant compound between the metals. The few little spots where they touch each other will be deep inside the joint, unable to get wet. And the alloy block is much much larger than a small steel fitting, so there is plenty of "sacrificial" capacity there. Any bush you put in there will be dissimilar anyway. Either steel or brass. Maybe stainless. All of them are different to the other parts in the chain. But what I said above still applies.
    • You are all good then, I didn't realise the port was in a part you can (have!) remove. Just pull the broken part out, clean it and the threads should be fine. Yes, the whole point about remote mounting is it takes almost all of the vibration out via the flexible hose. You just need a convenient chassis point and a cable tie or 3.
×
×
  • Create New...