Jump to content
SAU Community

Recommended Posts

  • Replies 103.8k
  • Created
  • Last Reply

Top Posters In This Topic

  • GTS-t VSPEC

    20904

  • Nizmo

    13582

  • SHUTO-BOY

    6636

  • skyzerr33

    5353

aw u home today shannon - im at work :D

Aidwin will pass on the sandwhich and other food stuffs.

As for dodgy foreigners probably haha my dad is going to taiwan in a couple of weeks so if this was after he came back i would be pretty suss!

GTS-t V-SPEC

Doesn't my sister drive ya crazy with her evo talk? I listened to her for half an hour wobble on about them on the weekend. I told her to shoosh cuz I don't like anything with triangle tail lights, JUST tryin to get her to stop. Of COURSE she had her Ralli-art hat on. She's a funny one.

Make sure you give to my Dad over his bald bit at the front! Give him a kick up the bum for the Pulser to. He used our money for that and now look where it is and has been sitting for so long. Then, after paying roteries out for years, he comes home with one? I can't work him out. I dunno, maybe you can.

If I can find a good photo I will stick it on here for all to see!!!!!

Everyone on this site can laugh at him then. That'll teach him!

R31 Chick,

Your sister is mad about EVO's and horses, she can't decide which she want's more:D

The Pulsar has sat in the corner for a while, but I think your Mum is going to use it for hill climbs one day.

The Chooky is being finished off so Evan can drive it, while he finishes building his.

Hope you find a photo:D

See'ya:burnout:

Guest
This topic is now closed to further replies.



  • Latest Posts

    • Yeah, that's fine**. But the numbers you came up with are just wrong. Try it for yourself. Put in any voltage from the possible range and see what result you get. You get nonsense. ** When I say "fine", I mean, it's still shit. The very simple linear formula (slope & intercept) is shit for a sensor with a non-linear response. This is the curve, from your data above. Look at the CURVE! It's only really linear between about 30 and 90 °C. And if you used only that range to define a curve, it would be great. But you would go more and more wrong as you went to higher temps. And that is why the slope & intercept found when you use 50 and 150 as the end points is so bad halfway between those points. The real curve is a long way below the linear curve which just zips straight between the end points, like this one. You could probably use the same slope and a lower intercept, to move that straight line down, and spread the error out. But you would 5-10°C off in a lot of places. You'd need to say what temperature range you really wanted to be most right - say, 100 to 130, and plop the line closest to teh real curve in that region, which would make it quite wrong down at the lower temperatures. Let me just say that HPTuners are not being realistic in only allowing for a simple linear curve. 
    • I feel I should re-iterate. The above picture is the only option available in the software and the blurb from HP Tuners I quoted earlier is the only way to add data to it and that's the description they offer as to how to figure it out. The only fields available is the blank box after (Input/ ) and the box right before = Output. Those are the only numbers that can be entered.
    • No, your formula is arse backwards. Mine is totally different to yours, and is the one I said was bang on at 50 and 150. I'll put your data into Excel (actually it already is, chart it and fit a linear fit to it, aiming to make it evenly wrong across the whole span. But not now. Other things to do first.
    • God damnit. The only option I actually have in the software is the one that is screenshotted. I am glad that I at least got it right... for those two points. Would it actually change anything if I chose/used 80C and 120C as the two points instead? My brain wants to imagine the formula put into HPtuners would be the same equation, otherwise none of this makes sense to me, unless: 1) The formula you put into VCM Scanner/HPTuners is always linear 2) The two points/input pairs are only arbitrary to choose (as the documentation implies) IF the actual scaling of the sensor is linear. then 3) If the scaling is not linear, the two points you choose matter a great deal, because the formula will draw a line between those two points only.
    • Nah, that is hella wrong. If I do a simple linear between 150°C (0.407v) and 50°C (2.98v) I get the formula Temperature = -38.8651*voltage + 165.8181 It is perfectly correct at 50 and 150, but it is as much as 20° out in the region of 110°C, because the actual data is significantly non-linear there. It is no more than 4° out down at the lowest temperatures, but is is seriously shit almost everywhere. I cannot believe that the instruction is to do a 2 point linear fit. I would say the method I used previously would have to be better.
×
×
  • Create New...