Jump to content
SAU Community

Recommended Posts

the ford rs2000 held the record in the late 80's early 90's. the current record for 0-100mph-0 is held by the a Ultima GTR (no its not a nissan) at 9.8 seconds. we previously held by a ferrari enzo at 10.9.

  • Replies 71
  • Created
  • Last Reply

Top Posters In This Topic

Top Posters In This Topic

Posted Images

Electric cars aren't gay. Have you seen that new Lexus forget what model it is, but's a big v8 with electric engine as well and it goes so damn hard and quite good on fuel for a big v8. They look awesom as well.

I'll try and dig up a website on it.

Its a V6. 'Power' of a V8 with 'economy' of a 4cyl. But its MILES better than that pyruis thing. Or I think so from what I have read and seen so far.

I still dont get this 100% though.

So car A travels 100m to get to 100kmh and takes 10 seconds

Car B takes 50m to get to 100kmh but also does in it 10 seconds

Is that it?

Im trying to get my head around that... Can someone explain it differently please.

Basically

When talking 0-100kmh races, the 'KMH' is the Constant and the 'Distance' reached varies.

When talking 400m races the 'Distance' is the Constant and the 'KMH' reached Varies.

Simple......

Edited by PSI_GTSII
So car A travels 100m to get to 100kmh and takes 10 seconds

Car B takes 50m to get to 100kmh but also does in it 10 seconds

Is that it?

Im trying to get my head around that... Can someone explain it differently please.

Imagine Car B is REALLY laggy, and only does 10k/h for the first 9 seconds, then for the last second full boost comes on crazy hard and it flys from 10k/h to 100/kh in that last second, the first 9 seconds it only covered 40meters because it was going so slow, then the last few metres it speed up to 100k/h..... covered it really quick..

(maths aren't right there just trying to make the point).

So car A travels 100m to get to 100kmh and takes 10 seconds

Car B takes 50m to get to 100kmh but also does in it 10 seconds

Is that it?

Im trying to get my head around that... Can someone explain it differently please.

Think of it like this. Both cars accelerate for 10 seconds. Car one accelerates very quickly to almost 100km/h in the first one second, then slowly accelerates to 100km/h over the next 9 seconds. It spends most of its 10 seconds at high speed. Car two accelerates very slowly for the first nine seconds, the quickly accelerates to 100km/h at the end. So it spends most of its 10 seconds at low speeds.

Both cars will reach 100km/h at the 10 second mark, but car one will have travelled more distance because it has spent more time at higher speeds than car two, so the AVERAGE speed over 10 seconds was higher.

This is an extreme example, but it applies to real world situations - a more reallistic example might be a stock GTR (all wheel drive) and modified GTST (rear wheel drive). These might have the same 0-100km/h time of 5 seconds, but the GTR will launch harder, and will hence get ahead quickly and cover more distance before the 100km/h speed is reached.

If that makes any sense to anyone...

Edited by Big Rizza
This is an extreme example, but it applies to real world situations - a more reallistic example might be a stock GTR (all wheel drive) and modified GTST (rear wheel drive). These might have the same 0-100km/h time of 5 seconds, but the GTR will launch harder, and will hence get ahead quickly and cover more distance before the 100km/h speed is reached.

If that makes any sense to anyone...

"but the GTR will launch harder, and will hence get ahead quickly and cover more distance before the 100km/h speed is reached. "

Shouldnt it be,

but the GTR will launch harder, and will hence get ahead quickly and cover less distance before the 100km/h speed is reached.

Or perhaps i do not grasp this concept real well? :P

"but the GTR will launch harder, and will hence get ahead quickly and cover more distance before the 100km/h speed is reached. "

Shouldnt it be,

but the GTR will launch harder, and will hence get ahead quickly and cover less distance before the 100km/h speed is reached.

Or perhaps i do not grasp this concept real well? :P

The GTR will launch harder, so it will be ahead of the GTST. The leading car will have covered more distance than the trailing car (otherwise it would be behind the other car, right?). Therefore, the GTR will have covered more distance than the GTST, and would be leadin the race. The GTST accelerates harder than the GTR once its tyres hook up properly, so it manages to reach 100km/h at the same TIME, but the GTR is already ahead by several car lengths after the brutal launch, so it has still covered more distance.

Edited by Big Rizza

im not so sure about that last example in this context, the initial example is simplified and is correct and interesting but it fails to model traction off the line, it assumes all have perfect traction

that last example of the gtr vs gtst attempts to incorporate traction/launch and is confusing peoples :P

So what your saying Big Rizza is Torque wins races. :P

To some degree yes. All else equal, the torquier car will win. But just as power alone will not win races, torque alone doesn't win races either. The Mazda Bravo turbo diesel I occasionally drive for work makes more torque at 2000rpm than the RB20DET powered Skyline I own makes at its peak, but with a peak power of just eighty-something kilowatts at 3500rpm, there's no way it would keep up with the skyline.

The turbo car runs a 16.3 at 265.69km/h (see what I mean about unreallistic :P)

This is only because your turbo car's speed increases exponentially (ie. it keeps accelerating faster and faster the more speed it piles up) - a parabola doesn't even come close to modelling a turbo car's speed over time :P it might be right initially because of the wheelspin but it won't be right afterwards.

Im still really struggling with this hey. I'll work it out when I get home. I think I got it. I just need to get my head around the whole dont work out out with speed and time, work it out with DISTANCE and time.

Thanks fellas. This really should be basic for me. :P

To some degree yes. All else equal, the torquier car will win. But just as power alone will not win races, torque alone doesn't win races either. The Mazda Bravo turbo diesel I occasionally drive for work makes more torque at 2000rpm than the RB20DET powered Skyline I own makes at its peak, but with a peak power of just eighty-something kilowatts at 3500rpm, there's no way it would keep up with the skyline.

Which leads me on to...

AVERAGE POWER!

Throw that Mazda Bravo behind a CVT trans and it might be a different story. :P

But yes as I've said before, its the complete package that matters.

Power, gearing, weight, traction and driver. :P

im not so sure about that last example in this context, the initial example is simplified and is correct and interesting but it fails to model traction off the line, it assumes all have perfect traction

that last example of the gtr vs gtst attempts to incorporate traction/launch and is confusing peoples :P

Well, if you don't like it, ignore it! :P If the original example works in your head better, use that!

Edited by Big Rizza
This is only because your turbo car's speed increases exponentially (ie. it keeps accelerating faster and faster the more speed it piles up) - a parabola doesn't even come close to modelling a turbo car's speed over time :P it might be right initially because of the wheelspin but it won't be right afterwards.

I DID say that extrapolating the formulas I chose wouldn't be reallistic :P It is just as unreallistic for the family car, which accelerates at a constant and linear rate for all eternity.

Which leads me on to...

AVERAGE POWER!

Throw that Mazda Bravo behind a CVT trans and it might be a different story. :P

But yes as I've said before, its the complete package that matters.

Power, gearing, weight, traction and driver. :D

Even with the CVT, I doubt the Bravo would keep with the skyline. The Bravo has a peak power of eighty-something kilowatts as I said, and I reckon that even with gear changes, rev changes etc. my peak power of 160+kw would result in greater average power. Plus skyline is lighter :P .

I understand what you're getting at.

I had an argument in High School with someone about this very thing. Had a pic of the graph you gave and you had to say which car was in front when they all hot 100kms/hr.

It's funny, nearly 90% of people thought they were a the same position! Geeze!

Anyway.....0-100's and quarter miles are good benchmarks..but to get what i think you want, you would like to see a 'How far can a car travel in 10secs..or 20sec' from a standing start (or rolling, or adapt further)

Yeah???

But if you did have that, people could then argue the opposite.. "10sec distance measurements mean nothing, doesn't show how fast it would do a quater mile!" and then show another graph and quote a few formulas.

Gotta do your own research i guess and go from there

:P

..and while I'm thinking about it more (gotta stop soon)

Your comparing apples oranges and lemons.

Everyone here is pretty much apples, apples so it does make sense to compare

Catchya

Birnie :P

Well to me I always thought you could compair fruits.

I mean apple is green or red, oranges are well orange. There is a comparision, its fair... I never understood the problem with it. Thats what comparisions are meant to do :P

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now



  • Similar Content

  • Latest Posts

    • Look for broken wire or bad connector at the motor. Might not be it, but is worth starting there, as it is easy.
    • Hi everyone, I’m having an issue with my R32 GT-R. Sometimes, when the car goes over a bump or experiences some vibration, the 4WD warning light comes on the dashboard. When I check the code from the control unit in the trunk, it shows Code 19 – ETS Motor. However, everything seems to be working fine — if I turn off the engine and restart the car, the light goes away and everything functions normally. Has anyone experienced this before? Where should I start troubleshooting this issue? Thanks in advance!
    • I'm back from the dyno - again! I went looking for someone who knew LS's and had a roller dyno, to see how it shaped up compared to everything else and confirm the powerband really is peaking where Mr Mamo says it should. TLDR: The dyno result I got this time definitely had the shape of how it feels on the road and finally 'makes sense'. Also we had a bit more time to play with timing on the dyno, it turns out the common practice in LS is to lower the timing around peak torque and restore it to max after. So given a car was on the dyno and mostly dialled in already, it was time for tweaking. Luis at APS is definitely knowledgable when it came to this and had overlays ready to go and was happy to share. If you map out your cylinder airmass you start seeing graphs that look a LOT like the engine's torque curve. The good thing also is if you map out your timing curve when you're avoiding knock... this curve very much looks like the inverse of the airmass curve. The result? Well it's another 10.7kw/14hp kw from where I drove it in at. Pretty much everywhere, too. As to how much this car actually makes in Hub Dyno numbers, American Dyno numbers, or Mainline dyno numbers, I say I don't know and it's gone up ~25kw since I started tinkering lol. It IS interesting how the shorter ratio gears I have aren't scaled right on this dyno - 6840RPM is 199KMH, not 175KMH. I have also seen other printouts here with cars with less mods at much higher "kmh" for their RPM due Commodores having 3.45's or longer (!) rear diff ratios maxing out 4th gear which is the 1:1 gear on the T56. Does this matter? No, not really. The real answer is go to the strip and see what it traps, but: I guess I should have gone last Sunday...
    • 310mm rotors will be avilable from Australia, Japan, and probably a few other places. Nothing for the front can be put on the back.
    • The filter only filters down to a specific size. Add to that, the filter is AFTER the pump. So it means everything starts breaking your pump even if its being filtered out.
×
×
  • Create New...