Jump to content
SAU Community

Recommended Posts

http://www.autoblog.com/2005/11/27/next-91...rbine-geometry/

http://digg.com/tech_news/Porsche_s_new_tu...ogy_for_the_911

Next 911 Turbo to feature Variable Turbine Geometry

November 16 of this year marked the day a century ago that Dr. Alfred Buchi received the first patent for an exhaust gas turbocharger. Porsche will be celebrating the turbo's 100-year anniversary a little late when it introduces the next 911 Turbo sometime next year with Variable Turbine Geometry. This technology allows the angle of the compressor's turbine blades to continually adjust. While some diesel engines have enjoyed this technology since the Nineties, the higher exhaust gas temperatures created by gasoline engines necessitated the creation of new heat-resistant materials to handle the hotness. Porsche and Borg Warner Turbo Systems were able to overcome the heat issue and have developed a VTG turbo system that will be incorporated into the next 911 Turbo. The VTG turbo will allow Porsche's flat-six to mimic a twin-turbo setup with a much broader torque curve and more flexible powerband than a standard single turbo could provide on its own. Power ratings for the new VTG turbo engine haven't been released and probably won't be until the new 911 Turbo surfaces sometime next year.

2051115.002.mini1L.jpg

I'd love to see a working diagram of one of these turbos in more detail.

Link to comment
https://www.sau.com.au/forums/topic/127801-variable-turbine-geometry/
Share on other sites

I'd love to see a working diagram of one of these turbos in more detail.

Your wish is my command.

http://www.porsche.com/all/masterwerk/flas...&height=513

Click Masterwerk once the Flash demo has finished loading.

Then under Act One click Variable Turbine Geometry.

I thought the new 997 Turbo was running twin VTG's. Its only a single?

While I realise that using a VTG system can mimic a twin-turbo setup with a much broader torque curve and more flexible powerband than a standard single turbo could provide on its own....it begs the question, why not just run twin turbos? Occams Razor, etc......

On any V engine (and a boxer engine especially), you hit plumbing problems with a single turbo. What's the benefit of going back to a single turbine rather than running a pair of turbines?

Imagine this engine with a pair of VTG turbos?

It's not the turbine blades that move on VNT turbos, it's the blades around the edge of the turbine that direct the exhaust gas on to it. It'd be impossible to do it the other way around.

Correct. In commercial aircraft engines they are called Nozzle Guide Vanes ( NGV's ) in the turbine or Variable Inlet Guide Vanes ( VIGV's ) in the Compressor. They change the angle of attack of the air going into the blades ( vanes in the case of turbo's ). Keeping in mind that in aircraft engines, the geometry of the turbine is not variable because of reliability and cost.

I'll be very interested to see how this goes into the future !!

The engine is going to need to run VERY cleanly to stop the guide vanes from siezing up with carbon build-up and I would imagine that the turbo service life on the new 911 would probably be an overhaul at something like 60,000km intervals.

The engine is going to need to run VERY cleanly to stop the guide vanes from siezing up with carbon build-up and I would imagine that the turbo service life on the new 911 would probably be an overhaul at something like 60,000km intervals.

Latest article I read, Porsche quotes 161,000km (100,00miles) for replacement or complete overhaul of the turbos :

Latest article I read, Porsche quotes 161,000km (100,00miles) for replacement or complete overhaul of the turbos :

I'd be extremely impressed if they can hold to that !!! ( and maintain full operating efficiency ).

These Garret VNT turbos have been around for about twenty years, nothing really new here.

They are not really suitable for petrol engines which is why Garret are pushing their GT ball bearing turbos for performance petrol engines, and the VNT turbos only for diesel engines. If these things worked as well as people think they do, companies like HKS would be offering them.

I ran a Garret VNT turbo on my Ford Laser for around two years so I can speak from plenty of practical experience.

You can order one from any Nissan dealer, part number is 14411-VC100 (charger assy-turbo). Back in 2003 it cost me $1454.55.

These variable vane turbos are the standard turbo fitted to the 4.0 litre Nissan Patrol diesel engine in Australia, and that particular engine produces 150Kw, so they are a rather small turbo. Two of these would be required on a larger engine.

Porsche seem to have made it work, where nobody else has. No doubt it took a lot of fairly sophisticated engine management and a lot of development. Don't think you can just bolt one on to your Skyline and get the same sort of results without the control system to make it work properly. There is far more to it han just hooking up a standard wastegate actuator to the vane control arm.

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now


  • Similar Content

  • Latest Posts

    • Hope you aren't too sore after that one, might take a day or 2 to notice yet and I guess it is a loooooong drive home. On the bright side, tube frame front end is a thing at superlap, right?
    • https://www.facebook.com/share/p/18rmVb1SKB/ 
    • The chart of front pressure to rear pressure (with one being on the x axis and the other being on the y axis) is not a straight line on a typical proportioning valve. At lower pressures there is a straight line with one slope, and at higher pressures that changes to a lower slope. That creates a bend in the line at that pressure, called the knee point. If you do not change the proportionng as the pressure gets higher, you will suffer excessive pressure (at one end of the car or the other, depending on which way you look at the proportioning action) and then get lockups at that end. The HFM BM57, from my memory of previous discussions, is based on the BM57 from a different car (to a Skyline), with a different requirement for the location of the knee point and the distribution of pressure front to rear, and so is not a good choice for an upgrade on a Skyline. Here's a couple of links to some old posts, one from here, one from elsewhere. A lot of it pertains to adjustable prop valves, but the idea is the same. There are plenty of discussions on here about this issue from al the many years of people wanting a cheap/accessible option. https://grassrootsmotorsports.com/forum/grm/learn-me-brake-proportioning-valves/236880/page1/ https://grassrootsmotorsports.com/forum/grm/learn-me-brake-proportioning-valves/236880/page1/  
    • Yeah dunno why johhny posted that here with no context, just post on FB/insta bro where he put it up?  Laine had an off at T4 during Thurs prac, he's ok, car is less than perfect, they are done for the weekend, he can fill in the rest. Bando also binned it like 100m up the road.   
    • I feel there must have been a FB/insta post and the weekend did not start well at all I hope everyone is all okay
×
×
  • Create New...