Jump to content
SAU Community

Recommended Posts

How is the steering rack ("weight, effort, pressure", call it what you will...), solenoid triggered? Is it either open or closed, thus light or heavy, or does the ecu duty cycle it to give a linear steering effort change? Thanks.

Link to comment
https://www.sau.com.au/forums/topic/298883-power-steering-rack-solenoid/
Share on other sites

What type of car?

Most car the sensor on the rack is only a sensor for the ecu so it knows to bump the idle up so as the motor dosnt stall from the load of the power steering pump

Interested in both R33 GTS-t and R33 GTR

The idle up is via a pressure switch in the pump high pressure line. The rack itself has a bypass bleed solenoid to vary rack assistance effort.

Interested in both R33 GTS-t and R33 GTR

The idle up is via a pressure switch in the pump high pressure line. The rack itself has a bypass bleed solenoid to vary rack assistance effort.

Ah yeah I know what you are talking about now.

It should be liniar. the ecu (or might be another modul) ajusted the efford compared to the speed the car is doing. E.g. more asisted at low speeds in car parks and less assisted at hight speed on the highway

I am pretty sure the hi-cas ecu in the boot controlls the unit, I am also interested in how it is operated.

My 33 gtst sometimes goes heavy and stays heavy. then next time i start it, it could be normal again.

Im looking at modding it.. possably removing it, would love to know how it is operated!

i am having a problems with my steering aswell feels like its controlled electronically when driving and makes the car viere from left to right slightly, so i could be driving down a straight bit of road and the car will just turn itself to one side slightly and start heading that way then turn back all of a sudden, its freaking annoying.

do u think replacing the hicas ecu will fix this problem?

as the hicas was also playing up, and was wiggling the arse end intermittently, so i removed it. maybe they are all related, and the hicas ecu is responsible.

found the info I was looking for.. in this thread.. http://www.skylinesaustralia.com/forums/Po...amp;hl=steering

look for the waveforms on post #29..

I haven't gotten any further into replacing the hicas module as mine is working.. after I fixed everything else.

  • 3 years later...

Major thread revival.

So i'm trying to find out what signal the Hicas unit gives the power steering solenoid in an R33 rack.

As the rack isn't actually in an R33 i can't just hook up a scope to the plug and see what its doing.

I need to know the duty cycle and frequency of the output is at say 0km/h and 100km/h. I assume it will be a linear line between those two points, above someone said its a square wave, thats a start.

The above link from heller44 does not work.

I looked in the R33 workshop manual which was no real help. It just stated that you should see approx 6-8V at 0km/h and around 2V? at 100km/h.

No actual duty cycle or frequency data is given in the manual.

What i'm trying to hopefully do is control the solenoid from my Link ECU in my R31. I previously have driven the car with the solenoid completely off and it did feel heavy at a stand still and low speeds.

Any help would be appreciated.

  • Like 1

Sweet, cheers for that mate.

That should be pretty easy to work out the duty cycle from then.

Locked at 123Hz across the board.

At 0km/h if the Solenoid is meant to be getting Approx 4.4 - 6.6V that is a rough 32 - 47% Duty cycle

At 100km/h if the Solenoid is meant to be getting Approx 1.5 - 2.2V that is a rough 11 - 16% Duty cycle.

Calculated on the basis of 14V.

After 100km/h do you know if the duty drops off to 0 eventually or it stays at approx 16% after 100km/h?

Looks like its just a case of doing a linear graph every 10km/h from 0 to 100 using those duty cycle's as the start and finish points.

  • Like 1
  • 6 years later...
On 3/19/2013 at 3:07 AM, kitto said:

Sweet, cheers for that mate.

That should be pretty easy to work out the duty cycle from then.

Locked at 123Hz across the board.

At 0km/h if the Solenoid is meant to be getting Approx 4.4 - 6.6V that is a rough 32 - 47% Duty cycle

At 100km/h if the Solenoid is meant to be getting Approx 1.5 - 2.2V that is a rough 11 - 16% Duty cycle.

Calculated on the basis of 14V.

After 100km/h do you know if the duty drops off to 0 eventually or it stays at approx 16% after 100km/h?

Looks like its just a case of doing a linear graph every 10km/h from 0 to 100 using those duty cycle's as the start and finish points.

Sorry to revive an old thread mate, wanted to know if there is a way to achieve this with some kind of dc converter? I got one of these racks with the solenoid in it but my r33 didn't have the solenoid type rack or wiring for it to begin with.

Edited by nicostar

What do you mean "DC converter"?

If you just want a fixed voltage at the rack, you could just blow away the extra volts with a suitably sized (ohms and watts) resistor.

If you wanted to go to the effort of using more electronics to achieve the same goal and waste a little less electricity, you could certainly put a DC-DC converter on there.

Or, you could build an Arduino to run a PWM output to an SSR. Choose a suitable frequency for the PWM (maybe 100Hz) and just punch out the pulsewidths required to get the voltage you want. It's pretty clear that it wants somewhere around 6V to get max assist (at low speeds) and ~2V to get minimum assist at higher speeds. If you went to a little more effort you could connect an Arduino input to the VSS and give it full variable assist to the same extent that the HICAS CU would.

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now


  • Similar Content

  • Latest Posts

    • When I said "wiring diagram", I meant the car's wiring diagram. You need to understand how and when 12V appears on certain wires/terminals, when 0V is allowed to appear on certain wires/terminals (which is the difference between supply side switching, and earth side switching), for the way that the car is supposed to work without the immobiliser. Then you start looking for those voltages in the appropriate places at the appropriate times (ie, relay terminals, ECU terminals, fuel pump terminals, at different ignition switch positions, and at times such as "immediately after switching to ON" and "say, 5-10s after switching to ON". You will find that you are not getting what you need when and where you need it, and because you understand what you need and when, from working through the wiring diagram, you can then likely work out why you're not getting it. And that will lead you to the mess that has been made of the associated wires around the immobiliser. But seriously, there is no way that we will be able to find or lead you to the fault from here. You will have to do it at the car, because it will be something f**ked up, and there are a near infinite number of ways for it to be f**ked up. The wiring diagram will give you wire colours and pin numbers and so you can do continuity testing and voltage/time probing and start to work out what is right and what is wrong. I can only close my eyes and imagine a rat's nest of wiring under the dash. You can actually see and touch it.
    • So I found this: https://www.efihardware.com/temperature-sensor-voltage-calculator I didn't know what the pullup resistor is. So I thought if I used my table of known values I could estimate it by putting a value into the pullup resistor, and this should line up with the voltages I had measured. Eventually I got this table out of it by using 210ohms as the pullup resistor. 180C 0.232V - Predicted 175C 0.254V - Predicted 170C 0.278V - Predicted 165C 0.305V - Predicted 160C 0.336V - Predicted 155C 0.369V - Predicted 150C 0.407V - Predicted 145C 0.448V - Predicted 140C 0.494V - Predicted 135C 0.545V - Predicted 130C 0.603V - Predicted 125C 0.668V - Predicted 120C 0.740V - Predicted 115C 0.817V - Predicted 110C 0.914V - Predicted 105C 1.023V - Predicted 100C 1.15V 90C 1.42V - Predicted 85C 1.59V 80C 1.74V 75C 1.94V 70C 2.10V 65C 2.33V 60C 2.56V 58C 2.68V 57C 2.70V 56C 2.74V 55C 2.78V 54C 2.80V 50C 2.98V 49C 3.06V 47C 3.18V 45C 3.23V 43C 3.36V 40C 3.51V 37C 3.67V 35C 3.75V 30C 4.00V As before, the formula in HPTuners is here: https://www.hptuners.com/documentation/files/VCM-Scanner/Content/vcm_scanner/defining_a_transform.htm?Highlight=defining a transform Specifically: In my case I used 50C and 150C, given the sensor is supposedly for that. Input 1 = 2.98V Output 1 = 50C Input 2 = 0.407V Output 2 = 150C (0.407-2.98) / (150-50) -2.573/100 = -0.02573 2.98/-0.02573 + 47.045 = 50 So the corresponding formula should be: (Input / -0.02573) + 47.045 = Output.   If someone can confirm my math it'd be great. Supposedly you can pick any two pairs of the data to make this formula.
    • Well this shows me the fuel pump relay is inside the base of the drivers A Pillar, and goes into the main power wire, and it connects to the ignition. The alarm is.... in the base of the drivers A Pillar. The issue is that I'm not getting 12v to the pump at ignition which tells me that relay isn't being triggered. AVS told me the immobiliser should be open until the ignition is active. So once ignition is active, the immobiliser relay should be telling that fuel pump relay to close which completes the circuit. But I'm not getting voltage at the relay in the rear triggered by the ECU, which leaves me back at the same assumption that that relay was never connected into the immobiliser. This is what I'm trying to verify, that my assumption is the most likely scenario and I'll go back to the alarm tech yet again that he needs to fix his work.      Here is the alarms wiring diagram, so my assumption is IM3A, IM3B, or both, aren't connected or improper. But this is all sealed up, with black wiring, and loomed  
    • Ceste, jak se mas Marek...sorry I only have english keyboard. Are you a fan of Poland's greatest band ever?   
×
×
  • Create New...