Jump to content
SAU Community

Recommended Posts

UAS has recently begun using Computational Fluid Dynamics (CFD) software to aid us in designing elements of our aerodynamics package.

Unforunately time and cost constraints make a true to life simulation a difficut task to achieve, as ideally every component down to the smallest washer should be modeled into the software and then animated to garner accurate results.

STANDARD CAR

FULL CAR SIMULATION

The above two videos show the flow trajectories over the UAS Zed and a standard 300ZX respectively. Though the models are rough they are enough to indicate significant changes in aerodynamic downforce and drag. The figures in the above simulations showed the UAS Zed generated five times more downforce than the standard 300ZX at 200km/h.

To give the exact measurements that is an increase from approximately 50kg to almost 280kg. Drag also increased but only by a factor of two with the standard car measuring 100kg of downforce to the UAS car's 230kg.

The UAS rear wing is a fantastic example of how we use the software to aid our design despite our time constraints. By focusing on a small area in isolation, we can more clearly judge how changes will impact our drag and downforce characteristics.

REAR WING

In this instance it was found that adding a 15mm gurney strip to the larger lower rear wing increased the overall downforce by a significant amount ( ≈ 11%). This produces an extra 14kg of effective weight on the rear at 200kph, with only ≈3% increase in total rear wing drag.

We have also been able to generate numerical data using the program. Doing so allowed us to find a number of interesting results.

On straights, the wear wing of the UAS Zed has a tendancy to flex under the downforce load. This change in area has an impact on the overall downforce of the wing.

circuit_battle.jpg

Using CFD analysis we were able to simulate a number of different instances. We simulated a straight wing, one with the top wing flexing to touch the lower and an instance of both flexing to the same degree. We did this at both 200km/h and 100km/h simulating a worst case scenario through high and low speed corners.

As can be seen from the tabulated data this flexing causes a drastic change in the dynamics of the wing. Both downforce and drag are significantly reduced as the wing starts to bend.

graph.jpg

On straights this is beneficial as it has the same effect as the adjustable rear wing systems used in the 2011 formula 1 season, if to a lesser degree, reducing drag so we can achieve a higher top speed.

In low speed areas it is slightly more detrimental, however it should be noted that at these speeds overall downforce is significantly lower and as such flex is reduced causing a corresponding reduction in overall downforce lost.

  • 4 weeks later...
  • 1 month later...
  • 2 weeks later...

what is the wing made of/? that is some serious flex

Carbon fibre epoxy resin with sandwich foam core. It flexes because it has 200+kg downforce.

We recently added an aluminium right angle gurney strip to the trailing edge of the main rear wing blade. This will stiffen it up a little bit, although the flex is not all bad as it creates maximum efficiency at low speed where it needs it most. At high speed as it bends it reduces efficiency but also less drag.

  • 1 month later...
  • 2 months later...

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now


  • Similar Content

  • Latest Posts

    • Hi, SteveL Thank you very much for your reply, you seem to be the only person on the net who has come up with a definitive answer for which I am grateful. The "Leak" was more by way of wet bubbles when the pedal was depressed hard by a buddy while trying to gey a decent pedal when bleeding the system having fitted the rebuilt BM50 back in the car, which now makes perfect sense. A bit of a shame having just rebuilt my BM50, I did not touch the proportioning valve side of things, the BM50 was leaking from the primary piston seal and fluid was running down the the Brake booster hence the need to rebuild, I had never noticed any fluid leaking from that hole previously it only started when I refitted it to the car. The brake lines in the photo are "Kunifer" which is a Copper/Nickel alloy brake pipe, but are only the ones I use to bench bleed Master cylinders, they are perfectly legal to use on vehicles here in the UK, however the lines on the car are PVF coated steel. Thanks again for clearing this up for me, a purchase of a new BMC appears to be on the cards, I have been looking at various options in case my BM50 was not repairable and have looked at the HFM BM57 which I understand is manufactured in Australia.  
    • Well the install is officially done. Filled with fluid and bled it today, but didn't get a chance to take it on a test drive. I'll throw some final pics of the lines and whatnot but you can definitely install a DMAX rack in an R33 with pretty minor mods. I think the only other thing I had to do that isn't documented here is grind a bit of the larger banjo fitting to get it to clear since the banjos are grouped much tighter on the DMAX rack. Also the dust boots from a R33 do not fit either fyi, so if you end up doing this install for whatever reason you'll need to grab those too. One caveat with buying the S15 dust boots however is that the clamps are too small to fit on the R33 inner tie rod since they're much thicker so keep the old clamps around. The boots also twist a bit when adjusting toe but it's not a big deal. No issues or leaks so far, steering feels good and it looks like there's a bit more lock now than I had before. Getting an alignment on Saturday so I'll see how it feels then but seems like it'll be good to go       
    • I don't get in here much anymore but I can help you with this.   The hole is a vent (air relief) for the brake proportioning valve, which is built into the master cylinder.    The bad news is that if brake fluid is leaking from that hole then it's getting past the proportioning valve seals.   The really bad news is that no spare parts are available for the proportioning valve either from Nissan or after market.     It's a bit of a PITA getting the proportioning valve out of the master cylinder body anyway but, fortunately, leaks from that area are rare in my experience. BTW, if those are copper (as such) brake lines you should get rid of them.    Bundy (steel) tube is a far better choice (and legal  in Australia - if that's where you are).
×
×
  • Create New...