Jump to content
SAU Community

Recommended Posts

Just sent my R34 GTT turbo off to GCG to get highflowed. Being doing abit of research and the max power is around 270rwkw from a R33 with cams. Mine also has cams ( tomei Poncams 260 ) and since the R34 has slightly larger exhaust housing... Is it safe to say that i should net 280rwkw with all the supporting fruit and a good tune? Now that would be pretty dam impressive from a highflow!

Link to comment
https://www.sau.com.au/forums/topic/131376-r34-gcg-highflow/
Share on other sites

A 10rwkw variance can be attributed to Dyno more than anything dude.

The figure will be between 250 & 270rwkw depending on the happieness of the dyno.

Thats around what most people get, so thats what you will get. I dont think you'll make more than anyone else when you have all the same gear :O

If you do only make 250rwkw, doesnt mean there is something wrong (i can see you posting a whats wrong" thread if thats what it makes)

Just remember its a dyno, tuning mainly is the use so results of a 15rwkw variance are not uncommon... so aslong as you get 250-270, she will go quite nicely i think :D

Okies all dyno read diff..And many factors contribute to a final dyno reading i guess. But a highflowed R34 will produce more then a R33 highflow right? surley the bigger rear would make a difference to the reading after taking into account diff tune and dyno machines?

I believe the R33 your refering to making 270rwkw was with cams and the bigger vg30/r34 exhaust housing so effectively when you highflow yours it will be exactly the same size turbo.

as R31Nismoid was saying, the happiness of the dyno could already be the 10-15rwkw difference.

Some of my experiences;

Example 1

R34GTT with R33GTST GCG Ball Bearing High flow and standard Neo cams = 253 rwkw.

R34GTT with R33GTST GCG Ball Bearing High flow and 260 Tomei Poncams = 265 rwkw.

Gain from changing cams = 12 rwkw (up to ~20 rwkw at some rpm points)

R34GTT with R34GTT GCG Ball Bearing High flow and 260 Tomei Poncams = 275 rwkw.

Gain from changing turbine cover and tuning = 10 rwkw

That’s my R34GTT on our race team dyno, which is most certainly not “happy”.

Example 2

R33TST with R33GTST GCG Ball Bearing High flow and 256 Tomei Poncams = 260 rwkw.

R33GTST with R33GTST GCG Ball Bearing High flow with VG30 turbine cover and 256 Tomei Poncams = 273 rwkw.

Gain from changing turbine cover and tuning = 13 rwkw

Ian’s R33GTST on another dyno, since results collate, most likely not “happy” either.

You can draw your own conclusions from the above.

:D cheers :D

Edited by Sydneykid
  • 2 weeks later...
Some of my experiences;

Example 1

R34GTT with R33GTST GCG Ball Bearing High flow and standard Neo cams = 253 rwkw.

R34GTT with R33GTST GCG Ball Bearing High flow and 260 Tomei Poncams = 265 rwkw.

Gain from changing cams = 12 rwkw (up to ~20 rwkw at some rpm points)

R34GTT with R34GTT GCG Ball Bearing High flow and 260 Tomei Poncams = 275 rwkw.

Gain from changing turbine cover and tuning = 10 rwkw

That’s my R34GTT on our race team dyno, which is most certainly not “happy”.

Example 2

R33TST with R33GTST GCG Ball Bearing High flow and 256 Tomei Poncams = 260 rwkw.

R33GTST with R323GTST GCG Ball Bearing High flow and 256 Tomei Poncams = 273 rwkw.

Gain from changing turbine cover and tuning = 13 rwkw

Ian’s R33GTST on another dyno, since results collate, most likely not “happy” either.

You can draw your own conclusions from the above.

:D cheers ;)

SK,

in example 2, am i correct in reading that you made more power with a R32GTST GCG Ball Bearing hi-flow turbo?

please clarify.

SK,

in example 2, am i correct in reading that you made more power with a R32GTST GCG Ball Bearing hi-flow turbo?

please clarify.

Sorry, trying to type too fast

I have fixed the original post, I think that answers your question.

At what boost level were those power levels reached SK?

1.3 and 1.4 bar respectively.

Dropped from 1.5 bar when we ported the cylinder head, less restrictions = more power at lower boost

:D cheers ;)

Sorry, trying to type too fast

I have fixed the original post, I think that answers your question.

1.3 and 1.4 bar respectively.

Dropped from 1.5 bar when we ported the cylinder head, less restrictions = more power at lower boost

:D cheers ;)

hey SK,

thanks, that makes sense.

hey, actually, again in example 2, you state the same mods although with different power levels, that being from a different turbine cover. what turbine cover was that?

Example 2

R33TST with R33GTST GCG Ball Bearing High flow and 256 Tomei Poncams = 260 rwkw.

R33GTST with R33GTST GCG Ball Bearing High flow and 256 Tomei Poncams = 273 rwkw.

Gain from changing turbine cover and tuning = 13 rwkw

they are all rated the same :rant:

i think the housing difference is very minor, just in the opening to the dump and stuff.

I think Bass Junky compared them... or was it someone else

Yer I did some measurements some time ago now, the R34/VG30 housing from memory was ~5mm wider.

I find it interesting how HKS tend to ran narrow skinny housings with a greater height where as the stock and garrett housings are flatter but wider.

hey SK,

thanks, that makes sense.

hey, actually, again in example 2, you state the same mods although with different power levels, that being from a different turbine cover. what turbine cover was that?

Example 2

R33TST with R33GTST GCG Ball Bearing High flow and 256 Tomei Poncams = 260 rwkw.

R33GTST with R33GTST GCG Ball Bearing High flow and 256 Tomei Poncams = 273 rwkw.

Gain from changing turbine cover and tuning = 13 rwkw

I edited it again to clarify, I thought the "Gain from changing turbine cover and tuning = 13 rwkw" told the story but it now reads a bit easier.

:rant: cheers :O

PS, my problem is so many posts and such slow typing speed.

Gary,

I'm curious...

The R34 and VG30 turbo's I had sitting here a while back were identical in general size not looking at comp wheel machining as the R34 comp wheel was considerably larger.

My understanding is that once the VG30 and R34GTT turbine covers are machined out for the GCG (high flow) turbine they are exactly the same.

:rant: cheers :O

Some of my experiences;

Example 1

R34GTT with R33GTST GCG Ball Bearing High flow and standard Neo cams = 253 rwkw.

R34GTT with R33GTST GCG Ball Bearing High flow and 260 Tomei Poncams = 265 rwkw.

Gain from changing cams = 12 rwkw (up to ~20 rwkw at some rpm points)

R34GTT with R34GTT GCG Ball Bearing High flow and 260 Tomei Poncams = 275 rwkw.

Gain from changing turbine cover and tuning = 10 rwkw

That’s my R34GTT on our race team dyno, which is most certainly not “happy”.

Example 2

R33TST with R33GTST GCG Ball Bearing High flow and 256 Tomei Poncams = 260 rwkw.

R33GTST with R33GTST GCG Ball Bearing High flow with VG30 turbine cover and 256 Tomei Poncams = 273 rwkw.

Gain from changing turbine cover and tuning = 13 rwkw

Ian’s R33GTST on another dyno, since results collate, most likely not “happy” either.

You can draw your own conclusions from the above.

:rant: cheers :O

SK what was the lag difference between the stock high flow and the one with the larger exhaust housing?

staring boost rpm and full boost rpm

thanks

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now


  • Similar Content

  • Latest Posts

    • Then, shorten them by 1cm, drop the car back down and have a visual look (or even better, use a spirit level across the wheel to see if you have less camber than before. You still want something like 1.5 for road use. Alternatively, if you have adjustable rear ride height (I assume you do if you have extreme camber wear), raise the suspension back to standard height until you can get it all aligned properly. Finally, keep in mind that wear on the inside of the tyre can be for incorrect toe, not just camber
    • I know I have to get a wheel alignment but until then I just need to bring the rear tyres in a bit they're wearing to the belt on the inside and brand new on the outside edge. I did shorten the arms a bit but got it wrong now after a few klms the Slip and VDC lights come on. I'd just like to get it to a point where I can drive for another week or two before getting an alignment. I've had to pay a lot of other stuff recently so doing it myself is my only option 
    • You just need a wheel alignment after, so just set them to the same as current and drive to the shop. As there are 2 upper links it may also be worth adding adjustable upper front links at the same time; these reduce bump steer when you move the camber (note that setting those correctly takes a lot longer as you have to recheck the camber at each length of the toe arm, through a range of movement, so you could just ignore that unless the handling becomes unpredictable)
    • I got adjustable after market rear camber arm to replace the stock one's because got sick of having to buy new rear tyres every few months. Can anyone please let me know what the best adjustment length would be. I don't have the old ones anymore to get measurements. I'm guessing the stock measurement minus a few mm would do it. Please any help on replacing them would be fantastic I've watched the YouTube clips but no-one talks about how long to set the camber arm to.
    • Heh. I copied the link to the video direct, instead of the thread I mentioned. But the video is the main value content anyway. Otherwise, yes, in Europe, surely you'd be expected to buy local. Being whichever flavour of Michelin, Continental or Pirelli suits your usage model.
×
×
  • Create New...