Jump to content
SAU Community

Recommended Posts

They are as relevant as a 7000rpm limit on the std crank.

100% agree on the point you're making, but I'm trying to make a different one :)

my standard rb30 crank goes to 9000rpm no probs so yeah I really do understand what you're saying :(

Nice to see the 3.4lt project is coming along still.

Im just guessing, but if the compression heights are kept to a lowish 28mm and the custom rod length is about 152mm to suit the RB30 block, the rod ratio works out to 1.6:1.

I've just run a few numbers on my engine calculator and for a street application with a degree of reliability 8000 rpm would be the absolute upper limit (including a missed gear shift). 8500 rpm would be pushing the limit of what the rod bolts and pistons will tolerate and 9000 RPM will break a conventional designed forged pistons as piston speeds exceed 46m/s.

Also at 9000 RPM the acceleration away from TDC/BDC is 54.5 m/s ^2. Numbers like that are only seen in all out drag engines. ie... engines built entirely from top shelf custom parts the likes of carillo/pauter with wmc5 bolts and special piston designs. Titanium rods would go a long way to improving high rpm reliability as the rotating mass and rod big end loads are considerably less due to less inertia during the acceleration/deceleration phases of the engines rotation.

post-26553-1261660079_thumb.jpg

Nice to see the 3.4lt project is coming along still.

Im just guessing, but if the compression heights are kept to a lowish 28mm and the custom rod length is about 152mm to suit the RB30 block, the rod ratio works out to 1.6:1.

I've just run a few numbers on my engine calculator and for a street application with a degree of reliability 8000 rpm would be the absolute upper limit (including a missed gear shift). 8500 rpm would be pushing the limit of what the rod bolts and pistons will tolerate and 9000 RPM will break a conventional designed forged pistons as piston speeds exceed 46m/s.

Also at 9000 RPM the acceleration away from TDC/BDC is 54.5 m/s ^2. Numbers like that are only seen in all out drag engines. ie... engines built entirely from top shelf custom parts the likes of carillo/pauter with wmc5 bolts and special piston designs. Titanium rods would go a long way to improving high rpm reliability as the rotating mass and rod big end loads are considerably less due to less inertia during the acceleration/deceleration phases of the engines rotation.

Do you feel like running the numbers for a std stroke rb30 for a comparison?

They are as relevant as a 7000rpm limit on the std crank.

Well rob @ rips revs his engines past 11500rpm and this is with the factory rb30 crank and making over 1400hp. Need i say anymore?

Well rob @ rips revs his engines past 11500rpm and this is with the factory rb30 crank and making over 1400hp. Need i say anymore?

yeah I think you've missed the point aswel mate

my standard rb30 crank goes to 9000rpm no probs so yeah I really do understand what you're saying :)

For a few dyno runs, with lazy driving for 10k-km's or are we talking a SOLID 30,000km's with the ass wringed out of it for streeter duties/drag days? :(

There is a... sizeable lets say... difference between the two.

BTW - i know the point you are making, not covered in the above i know :P

Sorry but Im not so good at making graphs. Ive got one other table that shows piston speeds and acceleration through 360 degrees crank rotation, and the comparison of the tomei to the HKS kit is really very little when comparing the two engine setups. Really the 119.5 rod was only made as an option to allow the use of a thicker crown piston that uses a conventional RB26 30mm compression height. Its well known that the 2.8 kits are safe for 10k so I didnt bother calculating the 8500rpm values.

Ive attached the rest of the table. You might recall the Racepace 2.9 spaced block engine that used a 84mm crank and SR20 rods as well.

At 9000 RPM the piston acceleration for a RB30 is 47.5m/s^2.

The most important thing to keep in mind is the whole point of having a stroker engine is that you dont have to rev the hell out of the engine to make reliable power. That extra 400+cc of capacity will do for the RB30 what the RB30's displacement does over the RB26, if that makes sense.

The beauty of the larger displacement AND the shorter rod ratio is that while the engine doesnt need to (and shouldnt) rev as much as another type of engine, the faster piston accelerations from BDC and TDC mean better cylinder filling making for a more torquie engine. The cylinder pulls into a vacuum faster on induction cycles than a higher ratio motor will, so the engine breathes more efficently.

I agree with Marko's comment that there is nothing wrong with the strength of an RB30 crank. Rob @ RIPS certainly has proven that time and time again. I do wonder what kind of rods and pistons are in his 11,500RPM engine though, im guessing aluminium/titanium and some very fancy pistons. The inertia loading of chromoly rods and pistons at that engine speed would be increadably high. Acceleration factor of an RB30 crankshaft at 11500 rpm is 77.5m/s^2. That is a 1/2 again as much as the RB30 at 9000 RPM.

post-26553-1261665231_thumb.jpg

Ash I think it's just not coloured correctly?

Yes thats it. I always was better at maths than I was at art, especially past 12am.

New table attached.

post-26553-1261700716_thumb.jpg

Edited by GTRNUR

My point was that this setup was never designed to be a big rever.

It was designed to ( compared to the equivalent setup in an normal stroke RB30 ) to make considerably more torque, bring boost on earlier and make same power with less boost and less revs.

So if it makes the same peak power as my current RB30/25 with less boost and less revs, and more torque and comes on boost earlier - Ill be happy.

If it revs to 7500 rpm then it realisticly should make more peak power than my current setup as that is what Im revving it to now, due to the increase in capacity.

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now



  • Similar Content

  • Latest Posts

    • As discussed in the previous post, the bushes in the 110 needed replacing. I took this opportunity to replace the castor bushes, the front lower control arm, lower the car and get the alignment dialled in with new tyres. I took it down to Alignment Motorsports on the GC to get this work done and also get more out of the Shockworks as I felt like I wasn't getting the full use out of them.  To cut a very long story short, it ended up being the case the passenger side castor arm wouldn't accept the brand new bush as the sleeve had worn badly enough to the point you could push the new bush in by hand and completely through. Trying a pair of TRD bushes didn't fix the issue either (I had originally gone with Hardrace bushes). We needed to urgently source another castor arm, and thankfully this was sourced and the guys at the shop worked on my car until 7pm on a Saturday to get everything done. The car rides a lot nicer now with the suspension dialled in properly. Lowered the car a little as well to suit the lower profile front tyres, and just bring the car down generally. Eternally thankful for the guys down at the shop to get the car sorted, we both pulled big favours from our contacts to get it done on the Saturday.  Also plugged in the new Stedi foglights into the S15, and even from a quick test in the garage I'm keen to see how they look out on the road. I had some concerns about the length of the LED body and whether it'd fit in the foglight housing but it's fine.  I've got a small window coming up next month where I'll likely get a little paint work done on the 110 to remove the rear wing, add a boot wing and roof wing, get the side skirt fixed up and colour match the little panel on the tail lights so that I can install some badges that I've kept in storage. I'm also tempted to put in a new pair of headlights on the 110.  Until then, here's some more pictures from Easter this year. 
    • I would put a fuel pressure gauge between the filter and the fuel rail, see if it's maintaining good fuel pressure at idle going up to the point when it stalls. Do you see any strange behavior in commanded fuel leading up to the point when it stalls? You might have to start going through the service manual and doing a long list of sensor tests if it's not the fuel system for whatever reason.
    • Hi,  Just joined the forum so I could share my "fix" of this problem. Might be of use to someone. Had the same hunting at idle issue on my V36 with VQ35HR engine after swapping the engine because the original one got overheated.  While changing the engine I made the mistake of cleaning the throttle bodies and tried all the tricks i could find to do a throttle relearn with no luck. Gave in and took it to a shop and they couldn't sort it. Then took it to my local Nissan dealership and they couldn't get it to idle properly. They said I'd need to replace the throttle bodies and the ecu probably costing more than the car is worth. So I had the idea of replacing the carbon I cleaned out with a thin layer of super glue and it's back to normal idle now. Bit rough but saved the car from the wreckers 🤣
    • After my last update, I went ahead with cleaning and restoring the entire fuel system. This included removing the tank and cleaning it with the Beyond Balistics solution, power washing it multiple times, drying it thoroughly, rinsing with IPA, drying again with heat gun and compressed air. Also, cleaning out the lines, fuel rail, and replacing the fuel pump with an OEM-style one. During the cleaning process, I replaced several hoses - including the breather hose on the fuel tank, which turned out to be the cause of the earlier fuel leak. This is what the old fuel filter looked like: Fuel tank before cleaning: Dirty Fuel Tank.mp4   Fuel tank after cleaning (some staining remains): Clean Fuel Tank.mp4 Both the OEM 270cc and new DeatschWerks 550cc injectors were cleaned professionally by a shop. Before reassembling everything, I tested the fuel flow by running the pump output into a container at the fuel filter location - flow looked good. I then fitted the new fuel filter and reassembled the rest of the system. Fuel Flow Test.mp4 Test 1 - 550cc injectors Ran the new fuel pump with its supplied diagonal strainer (different from OEM’s flat strainer) and my 550cc injectors using the same resized-injector map I had successfully used before. At first, it idled roughly and stalled when I applied throttle. Checked the spark plugs and found that they were fouled with carbon (likely from the earlier overly rich running when the injectors were clogged). After cleaning the plugs, the car started fine. However, it would only idle for 30–60 seconds before stalling, and while driving it would feel like a “fuel cut” after a few seconds - though it wouldn’t fully stall. Test 2 – Strainer swap Suspecting the diagonal strainer might not be reaching the tank bottom, I swapped it for the original flat strainer and filled the tank with ~45L of fuel. The issue persisted exactly the same. Test 3 – OEM injectors To eliminate tuning variables, I reinstalled the OEM 270cc injectors and reverted to the original map. Cleaned the spark plugs again just in-case. The stalling and “fuel cut” still remained.   At this stage, I suspect an intermittent power or connection fault at the fuel pump hanger, caused during the cleaning process. This has led me to look into getting Frenchy’s fuel hanger and replacing the unit entirely. TL;DR: Cleaned and restored the fuel system (tank, lines, rail, pump). Tested 550cc injectors with the same resized-injector map as before, but the car stalls at idle and experiences what feels like “fuel cut” after a few seconds of driving. Swapped back to OEM injectors with original map to rule out tuning, but the issue persists. Now suspecting an intermittent power or connection fault at the fuel pump hanger, possibly cause by the cleaning process.  
×
×
  • Create New...