Jump to content
SAU Community

Recommended Posts

but what if the skyline had, like, sic cat back zorst and some HGE boost. Wouldn't it win then?

I heard the F1 cars don't have much torque, so maybe if they raced on the uphill :confused:

Originally posted by Silver-Arrowz

the ferrari wins cause it's got more stickers. More stickers = more HP.

Yeah, you're right about that, you should see how many stickers are going on for Dutton rally.....we are sure to kick everyone's arse

Originally posted by Rezz

This thread should be titled "Ferrari F1 car opens up a can 'o whoop ass on pit crew member"...:P

:bahaha: yeah, I would have except there wouldn't be a "vs" in the title :)

Do you reckon that crew member made a mistake at the last pitstop and it was payback time?

bit of insite into f1

An F1 car is made up of 80,000 components, if it were assembled 99.9% correctly, it would still start the race with 80 things wrong!

Formula 1 cars have over a kilometre of cable, linked to about 100 sensors and actuators which monitor and control many parts of the car.

An F1 car can go from 0 to 160 kph and back to 0 in 4 seconds.

At 550kg a F1 car is less than half the weight of a Mini.

In an F1 engine revving at 18000 rpm, the piston will travel up and down 300 times a second.

Maximum piston acceleration is approximately 7000G (humans pass out at 7-8G).

Drivers haven't had to resort to pressure suits like fighter pilots because they only experience high G's for very short periods of time.

If a connecting rod let go of its piston at maximum engine speed, the piston would have enough energy to travel vertically over 100 m.

If a water hose were to blow off, the complete cooling system would empty in just over a second.

Gear cogs or ratios are used only for one race, and are replaced regularly to prevent failure, as they are subjected to very high degrees of stress.

The fit in the ****pit is so tight that the steering wheel must be removed for the driver to get in or out of the car. A small latch behind the wheel releases it from the column. Levers or paddles for changing gear are located on the back of the wheel. So no gearstick! The clutch levers are also on the steering wheel, located below the gear paddles.

To give you an idea of just how important aerodynamic design and added downforce can be, small planes can take off at slower speeds than race cars travel on the track.

Without aerodynamic downforce, high-performance racing cars have sufficient power to produce wheel spin and loss of control at 160 kph. They usually race at over 300 kph.

The amount of aerodynamic downforce produced by the front and rear wings and the car underbody is amazing. Once the car is travelling over 160 kph, an F1 car can generate enough downforce to equal it's own weight. That means it could actually hold itself to the ceiling of a tunnel and drive upside down! In a street course race, the downforce provides enough suction to lift manhole covers. Before the race all of the manhole covers on the streets have to be welded down to prevent this from happening!

If you've ever changed a tyre, you know that you have to jack the car up off the ground to be able to replace the wheel. And it takes ages. F1 cars have integrated pneumatic jacks in the chassis (rather than the manual jacks normal cars have) - two in the front and one in the rear. By connecting a pressurised nitrogen hose to a port located behind the driver, the pit crew can jack the whole car up in less than a second when the car stops in the pit.

The refuelers used in F1 can supply 12 litres of fuel per second. This means it would take just 4 seconds to fill the tank of an average 50 litre family car.

Top F1 pit crews can refuel and change tyres in around 3 seconds.

Race car tyres don't have air in them like normal car tyres. Most racing tyres have nitrogen in the tyres because nitrogen has a more consistent pressure compared to normal air. Air typically contains varying amounts of water vapour in it, which affects its expansion and contraction as a function of temperature, making the tyre pressure unpredictable.

During the race the tyres lose weight! Each tyre loses about 0.5 kg in weight due to wear.

At ~ 350 mm wide, F1 tyres are much wider than normal tyres (~185 mm wide).

Normal tyres last 60 000 - 100 000 km. Racing tyres are designed to last 90 - 120 km.

A dry-weather F1 tyre reaches peak operating performance (best grip) when tread temperature is between 90°C and 120°C. At top speed, F1 tyres rotate 50 times a second, or 3000 rpm

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now


  • Similar Content

  • Latest Posts

    • This is where I share pain with you, @Duncan. The move to change so many cooling system pieces to plastic is a killer! Plastic end tanks and a few plastic hose flanges on my car's fail after so little time.  Curious about the need for a bigger rad, is that just for long sessions in the summer or because the car generally needs more cooling?
    • So, that is it! It is a pretty expensive process with the ATF costing 50-100 per 5 litres, and a mechanic will probably charge plenty because they don't want to do it. Still, considering how dirty my fluid was at 120,000klm I think it would be worth doing more like every 80,000 to keep the trans happy, they are very expensive to replace. The job is not that hard if you have the specialist tools so you can save a bit of money and do it yourself!
    • OK, onto filling. So I don't really have any pics, but will describe the process as best I can. The USDM workshop manual also covers it from TM-285 onwards. First, make sure the drain plug (17mm) is snug. Not too tight yet because it is coming off again. Note it does have a copper washer that you could replace or anneal (heat up with a blow torch) to seal nicely. Remove the fill plug, which has an inhex (I think it was 6mm but didn't check). Then, screw in the fill fitting, making sure it has a suitable o-ring (mine came without but I think it is meant to be supplied). It is important that you only screw it in hand tight. I didn't get a good pic of it, but the fill plug leads to a tube about 70mm long inside the transmission. This sets the factory level for fluid in the trans (above the join line for the pan!) and will take about 3l to fill. You then need to connect your fluid pump to the fitting via a hose, and pump in whatever amount of fluid you removed (maybe 3 litres, in my case 7 litres). If you put in more than 3l, it will spill out when you remove the fitting, so do quickly and with a drain pan underneath. Once you have pumped in the required amount of clean ATF, you start the engine and run it for 3 minutes to let the fluid circulate. Don't run it longer and if possible check the fluid temp is under 40oC (Ecutek shows Auto Trans Fluid temp now, or you could use an infrared temp gun on the bottom of the pan). The manual stresses the bit about fluid temperature because it expands when hot an might result in an underfil. So from here, the factory manual says to do the "spill and fill" again, and I did. That is, put an oil pan under the drain plug and undo it with a 17mm spanner, then watch your expensive fluid fall back out again, you should get about 3 litres.  Then, put the drain plug back in, pump 3 litres back in through the fill plug with the fitting and pump, disconnect the fill fitting and replace the fill plug, start the car and run for another 3 minutes (making sure the temp is still under 40oC). The manual then asks for a 3rd "spill and fill" just like above. I also did that and so had put 13l in by now.  This time they want you to keep the engine running and run the transmission through R and D (I hope the wheels are still off the ground!) for a while, and allow the trans temp to get to 40oC, then engine off. Finally, back under the car and undo the fill plug to let the overfill drain out; it will stop running when fluid is at the top of the levelling tube. According to the factory, that is job done! Post that, I reconnected the fill fitting and pumped in an extra 0.5l. AMS says 1.5l overfill is safe, but I started with less to see how it goes, I will add another 1.0 litres later if I'm still not happy with the hot shifts.
    • OK, so regardless of whether you did Step 1 - Spill Step 2 - Trans pan removal Step 3 - TCM removal we are on to the clean and refill. First, have a good look at the oil pan. While you might see dirty oil and some carbony build up (I did), what you don't want to see is any metal particles on the magnets, or sparkles in the oil (thankfully not). Give it all a good clean, particularly the magnets, and put the new gasket on if you have one (or, just cross your fingers) Replacement of the Valve body (if you removed it) is the "reverse of assembly". Thread the electrical socket back up through the trans case, hold the valve body up and put in the bolts you removed, with the correct lengths in the correct locations Torque for the bolts in 8Nm only so I hope you have that torque wrench handy (it feels really loose). Plug the output speed sensor back in and clip the wiring into the 2 clips, replace the spring clip on the TCM socket and plug it back into the car loom. For the pan, the workshop manual states the following order: Again, the torque is 8Nm only.
    • One other thing to mention from my car before we reassemble and refill. Per that earlier diagram,   There should be 2x B length (40mm) and 6x C length (54mm). So I had incorrectly removed one extra bolt, which I assume was 40mm, but even so I have 4x B and 5x C.  Either, the factory made an assembly error (very unlikely), or someone had been in there before me. I vote for the latter because the TCM part number doesn't match my build date, I suspect the TCM was changed under warranty. This indeed led to much unbolting, rebolting, checking, measuring and swearing under the car.... In the end I left out 1x B bolt and put in a 54mm M6 bolt I already had to make sure it was all correct
×
×
  • Create New...