Jump to content
SAU Community

Recommended Posts

Sorry this has probably been covered a million times but I searched for 45mins+ and couldn't find the specifics. I have an RB25DET from S2 33 with PFC and Z32 and GT3071, it has the typical reversion stalling problem. From what I've read it's to do with the AFM distance from the turbo inlet and something to do with the bends and smooth surface of the piping. What I want to confirm is, some bends are needed and it needs to be a decent distance from the turbo inlet, correct? I'm basically running some silicone hose joiners/bends and the AFM and a metal reducer. Should I be looking at trying to reduce the use of the silicone hose/joiner/bend things and going mainly metal? Would making up a bracket and attaching it to the body help or is that just stupid lol? Any tips, tricks etc?

Hope it was to long winded and confusing.

Cheers!

Link to comment
https://www.sau.com.au/forums/topic/452462-how-to-fixavoid-reversion-stalling/
Share on other sites

Also BOV return angle plays a big part.

Currently have an aftermarket BOV in the standard place near the TB plumbed into the intake at a 90degree like a T fitting. How should it be plumbed in?

Thanks Ben, anyone else with more insight? Because it does it when there's not much boost and load too, for example if I'm cruising doing 100km/hr and put the clutch in for a few seconds or if I'm cruising and just clutch in and brake.

Ben is on the money. Also correct me if I am wrong, but you will never fix the stalling if you are getting reversion from the turbo while using an afm. You will need a map sensor to fix it. (Or make it a blow through setup, though I have never used one or seen one that works well.)

Edited by Stagea97

More or less, yes.

The factory plumbing is a good guide. There's a decent bend and a half in the rubber to the AFM, plus it is convoluted which helps to soak up some of the reverse flow. Smooth bends will always tend to allow a bit more reversion, but they are more desirable for a number of other reasons, so we have to live with them. The angle of the factory BOV return is also pretty steeply aimed at the turbo inlet. I think (per what Ben said) that that is probably the biggest effect.

Be aware though, that the whole factory system, AFM, turbo, BOV, pipework, was designed about an engine only pulling enough air for about 180 fwKW and about 7 psi of boost. Fit bigger turbos, run much higher boost, and there ends up being a lot more air needing to be dealt with when the BOV vents. At some point it becomes inevitable that you have more than can recirculate neatly and some will have to spill back through the AFM. It's hard to know where/when you'll get to that point on any given setup though, and hence whether effort spent on "fixing" reversion will yield results. That said, whenever your BOV return is clearly not right (as yours would appear to be), then you'd be silly not to try.

Take a pic - show us how far away the AFM is from the turbo inlet.

A simple rule of thumb is have the AFM as far away from the turbo inlet as possible, then you have no issue. If you can move it even 5-10cm, that can be all the difference that is needed. Hence most people with singles and AFM is pretty much as close to the headlight/guard as it can get.

Ben is on the money. Also correct me if I am wrong, but you will never fix the stalling if you are getting reversion from the turbo while using an afm. You will need a map sensor to fix it. (Or make it a blow through setup, though I have never used one or seen one that works well.)

Totally wrong.

Damn haha. What parts are wrong? I thought having air coming back through the blades towards the afm in bursts would cause the afm to read air in bursts causing fueling in bursts also. Also a map would be placed in the plenum and wouldn't be affected?

Damn haha. What parts are wrong? I thought having air coming back through the blades towards the afm in bursts would cause the afm to read air in bursts causing fueling in bursts also. Also a map would be placed in the plenum and wouldn't be affected?

I think he's referring to you saying it can't be totally fixed is wrong.

The car is in pieces so can't take a pic, also don't have any pics from before as the bay was ugly so not worth taking pics of ;)

The stalling and AFM reversion can be two different things.

1. Stalling due to ATMO venting BOV while running AFM - this can be tuned around. ECU expects air to return, it isn't - so car stalls.

2. Reversion over the AFM - AFM can be too close to the turbo, reversion isn't just the recirc of the BOV and air directed in the wrong way but being to close to the compressor wheel where there is a lot of turbulence.

Simply moving the AFM further away will fix reversion over the AFM. Hell I've seen 500rwkw+ single setups with AFM working fine, but the AFM is as far away as possible from the intake.

Moving the AFM however will not fix the stalling issues that relate to BOVs, that comes to the tune.

Also remember factory BOVs leak at idle, hence they MUST be plumbed back. GTR BOVs do this as well, reason being is to reduce compressor surge in lower RPMs. People that have changed to aftermarket BOVs on GT-Rs and running larger twins - have at times have surging in low RPM/high load scenarios. This is partly the cause as there is no bleeding of the air (the second being the factory piping, but thats another discussion).

I understand you can easily tune around having an atmospheric bov.

So you're saying that if you're having problems with having a too tight of a bov that's causing flutter, you can move the afm further away from the turbine and it will fix the stalling?

I understand you can easily tune around having an atmospheric bov.

So you're saying that if you're having problems with having a too tight of a bov that's causing flutter, you can move the afm further away from the turbine and it will fix the stalling?

No that is not what I said at all.

Because the AFM is a hot wire it can not identify which way air is traveling, in many cases the ECU commends for more fuel when there is a current change, that includes when air is bounced at it through the turbocharger. It causes an momentarily richness, hence the idle hunt or stall.

To fix it, Trace the tables in primary fuel map of when the engine is off throttle, deduct a small VE of fuel out of those blocks, and that usually does the trick.

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now


  • Similar Content

  • Latest Posts

    • Yup. You can get creative and make a sort of "bracket" with cable ties. Put 2 around the sender with a third passing underneath them strapped down against the sender. Then that third one is able to be passed through some hole at right angles to the orientation of the sender. Or some variation on the theme. Yes.... ummm, with caveats? I mean, the sender is BSP and you would likely have AN stuff on the hose, so yes, there would be the adapter you mention. But the block end will either be 1/8 NPT if that thread is still OK in there, or you can drill and tap it out to 1/4 BSP or NPT and use appropriate adapter there. As it stands, your mention of 1/8 BSPT male seems... wrong for the 1/8 NPT female it has to go into. The hose will be better, because even with the bush, the mass of the sender will be "hanging" off a hard threaded connection and will add some stress/strain to that. It might fail in the future. The hose eliminates almost all such risk - but adds in several more threaded connections to leak from! It really should be tapered, but it looks very long in that photo with no taper visible. If you have it in hand you should be able to see if it tapered or not. There technically is no possibility of a mechanical seal with a parallel male in a parallel female, so it is hard to believe that it is parallel male, but weirder things have happened. Maybe it's meant to seat on some surface when screwed in on the original installation? Anyway, at that thread size, parallel in parallel, with tape and goop, will seal just fine.
    • How do you propose I cable tie this: To something securely? Is it really just a case of finding a couple of holes and ziptying it there so it never goes flying or starts dangling around, more or less? Then run a 1/8 BSP Female to [hose adapter of choice?/AN?] and then the opposing fitting at the bush-into-oil-block end? being the hose-into-realistically likely a 1/8 BSPT male) Is this going to provide any real benefit over using a stainless/steel 1/4 to 1/8 BSPT reducing bush? I am making the assumption the OEM sender is BSPT not BSPP/BSP
    • I fashioned a ramp out of a couple of pieces of 140x35 lumber, to get the bumper up slightly, and then one of these is what I use
    • I wouldn't worry about dissimilar metal corrosion, should you just buy/make a steel replacement. There will be thread tape and sealant compound between the metals. The few little spots where they touch each other will be deep inside the joint, unable to get wet. And the alloy block is much much larger than a small steel fitting, so there is plenty of "sacrificial" capacity there. Any bush you put in there will be dissimilar anyway. Either steel or brass. Maybe stainless. All of them are different to the other parts in the chain. But what I said above still applies.
    • You are all good then, I didn't realise the port was in a part you can (have!) remove. Just pull the broken part out, clean it and the threads should be fine. Yes, the whole point about remote mounting is it takes almost all of the vibration out via the flexible hose. You just need a convenient chassis point and a cable tie or 3.
×
×
  • Create New...