Jump to content
SAU Community

Recommended Posts

This isn't really an RB or Nissan thing but back in early April Mahle published a paper for the SAE WCX digital summit on their project with passive turbulent jet ignition. Active TJI has been used in F1 for a while now due to the fuel flow/refueling limits in those races. Passive TJI is kind of like active TJI, except instead of the complication of having a direct injection mechanism inside of a prechamber with a spark plug the passive system relies on the compression stroke to force fuel/air mixture into the prechamber, either via a main chamber direct injector or a port fuel injector. The disadvantage of this setup is that it doesn't allow for any lean burn tricks like the active version, but the advantage is that Mahle is claiming they've been able to get this passive variant to fit in the same footprint as existing M12 spark plugs:

 801369602_ScreenShot2021-05-01at12_11_27AM.thumb.png.364f966fc3dd7e0b8bf4d004893cc0b2.png

They include a nice photo of what a production variant might look like:

559768420_ScreenShot2021-05-01at1_00_35AM.thumb.png.fbd19baba15901ad6a47037988c35509.png

HKS' prototype for comparison, which may or may not actually be functional:

187946572_ScreenShot2021-05-01at12_12_51AM.thumb.png.4744ec961dc8cb19563b6a51ccb69f25.png

The primary driver for this research right now is the ever-tightening noose of RDE conformance (step 1,2,3, etc) which is making all the ICE manufacturers scramble to come up with solutions for how they're going to get a gasoline engine to never enrich under high load which is going to cause them to blow past the PM/PN and HC/CO limits set by Euro6d. Introductions aside, the real question is what Mahle achieved. This research was done against their 1.5L I3 testbed engine which achieved a peak of ~37% thermal efficiency and has all kinds of tricks up its sleeve like GDI, integrated exhaust manifold for fast warm-up, dual wide angle (60 crank degree of traverse) VVT, DOHC 4V head, 83mm bore, 92.2mm stroke, electronic wastegate on the turbo, etc. This is broadly kind of similar to the Honda L15B7 which also achieves 37-38% peak brake thermal efficiency in the sweet spot but tails off to pretty mediocre levels at WOT in the 5000-6000 RPM range, maybe 25% due to the boost enrichment: https://www.epa.gov/sites/production/files/2018-10/documents/sae-paper-2018-01-0319.pdf

To convert this engine to MJI in a kind of drop-in application they changed the CR from 9.25 to 9.1, changed the engine to port injection only, added a low pressure cooled EGR system, and changed the turbo to a higher flow turbine due to the higher mass flow rate through the turbine from EGR. Cams remained pretty standard stuff, 246 degree duration for both intake and exhaust. One problem they noted here was that their first iteration of the spark plug had too much pre-chamber volume which led to extreme combustion rates, over 6 bar per crank degree. They ran a few different "shoot-out" experiments comparing this 9.1 CR engine with their passive TJI system to the same engine with a central spark plug to try and eliminate other variables.

1203460609_ScreenShot2021-05-01at12_34_18AM.thumb.png.842e4742c5c0eb2a28c9835d6d0acf8f.png

833727401_ScreenShot2021-05-01at12_34_36AM.thumb.png.eadf3a94e54146cbe51d237df57b844b.png

These tests had limits set like stoichiometric AFR for the full sweep, 98 RON pump gas, <950C EGT pre-turbine, compressor outlet IAT <180C, and <6 bar/degree pressure increase. The main takeaway here seems to be that within those constrains they were able to get more timing advance in the sense that the burn rate of the air/fuel mix is fast enough that even the same ignition timing results in better combustion phasing, with the 50% mean fraction burned point getting closer to 10 degrees after TDC which seems to be what they settled on as MBT for this engine. If you look at the the ~80 kW/L load point at 5000 RPM it's almost 5 extra degrees of timing. The big caveat here is that maximum cylinder pressure is at least 20% higher than the central spark plug which the bottom-end has to be designed for. The engine also needs a pretty tremendous amount of EGR to not run boost enrichment:

811936433_ScreenShot2021-05-01at1_05_31AM.thumb.png.0d45a1d8e993efc87612b8e16e1773a0.png

591037933_ScreenShot2021-05-01at1_21_49AM.thumb.png.eaf70c38bc818308c87dcc223307fa96.png

I think this chart sums it up pretty well, the engine used in this fuel vs timing/EGT/etc chart is a different one they made for a different paper (miller cycle, 172 degree intake cam, 14.7 CR) shows that ~90 RON with passive TJI gives you better timing than 95 RON with a normal plug, and 95 RON gives you better timing than 99 RON with a normal spark plug. The big question in my mind is just how relevant this is to an old engine like an RB26. It sounds like cooled external EGR is a pretty central part of being able to realize full stoichiometric operation from these results, what kind of results would result from VVT-based internal EGR?

  • Like 1

Some kind of coincidence always seems to occur when I ask questions, it turns out that Mahle did study the delta between MJI vs MJI + LP-EGR:

1670774653_ScreenShot2021-05-01at2_21_28AM.thumb.png.7f33632a0189c469bca07e9ee4505535.png 

Maybe this is a lot more doable than it seems at first glance? The problem as mentioned before is that EGR is necessary at high load to control the rate at which the mixture burns to keep things within what a reasonable bottom-end can handle. 

Yeah, I rubbished the idea last time the HKS project for this was mentioned (a couple of months ago). Not so much because it is a bad idea. Just because there seems to be far too much other crap beyond just a "retrofit sparkplug" required to make an old engine** work this way.

 

**Where "old engine" was specifically an RB26. But really this has to be true for almost everything.

8 hours ago, Ben C34 said:

No one is going to do that mate. Not for at least 20 years

It's been in development for like 10 years, half the paper is discussing their efforts to get this thing ready for mass production, there's a lot of "boring" stuff in there like warm idle control authority via spark timing, cold start catalyst heating, cold start combustion stability down to -8C, etc. They're also claiming that the impact of main chamber GDI vs PFI with this ignition method is reduced because there's a lot less time for spark knock to develop. I think OEMs are probably pretty interested in the idea if only because it reduces their costs/complication by eliminating GDI in the passive variants.

6 hours ago, GTSBoy said:

Yeah, I rubbished the idea last time the HKS project for this was mentioned (a couple of months ago). Not so much because it is a bad idea. Just because there seems to be far too much other crap beyond just a "retrofit sparkplug" required to make an old engine** work this way.

 

**Where "old engine" was specifically an RB26. But really this has to be true for almost everything.

I get the distinct impression that Mahle is trying to sell this to OEMs as a cheap retrofit, there's also mention of controlling the pre-chamber volume to get to the desired target pressure rise rate which sounds like it may help in cases where you can't just retrofit EGR or an EGR cooler. I think the real deal-killer is likely to be working around an extra 30% in peak cylinder pressure, it'd be interesting to know what kinds of bmep the RBs run these days and what kinds of peak cylinder pressures. This kind of improvement is pretty substantial IMO:

431832513_ScreenShot2021-05-01at1_04_23PM.thumb.png.58713cb7caaf4ee3248cb2d20d84fae1.png

The question I really have is more about VVT than anything else. When I look at the packaging of this engine in these cars I really don't see a viable method of recirculating exhaust gases externally. Is there some method of using VVT at high load to achieve internal EGR without adverse knock-on effects? I guess you could crank the boost?

4 hours ago, joshuaho96 said:

 Is there some method of using VVT at high load to achieve internal EGR without adverse knock-on effects? I guess you could crank the boost?

I think you'd need to go camless Koenigsegg style valve actuation. So you can pop the valve open when you want it, rather than just move the whole normal valve event forward and backward wrt the normal lobe centre.

It really is last gasp stuff though, because the petrol engine is going to stop making sense sometime real soon.

  • Like 1
12 minutes ago, GTSBoy said:

I think you'd need to go camless Koenigsegg style valve actuation. So you can pop the valve open when you want it, rather than just move the whole normal valve event forward and backward wrt the normal lobe centre.

It really is last gasp stuff though, because the petrol engine is going to stop making sense sometime real soon.

Yeah, I'm pretty sure this is the last gasp. I'm really only interested in looking into this because the compromises involved in E85 (only a few stations, major rework of the fueling system end to end, corrosive, significant range reductions) and water injection (reliability, oil contamination/piston wall scuffing concerns, finding space for a water tank + water lines, maintenance requirements, actually sourcing injectors that work well, etc). Passive TJI seems to be a bit simpler in that the fueling doesn't need to adapt, it seems like maybe it won't be a guaranteed silver bullet that allows for lambda 1 everywhere all the time in retrofit applications but it would allow for better timing + more lambda 1 operation.

36 minutes ago, joshuaho96 said:

Yeah, I'm pretty sure this is the last gasp. I'm really only interested in looking into this because the compromises involved in E85 (only a few stations, major rework of the fueling system end to end, corrosive, significant range reductions) and water injection (reliability, oil contamination/piston wall scuffing concerns, finding space for a water tank + water lines, maintenance requirements, actually sourcing injectors that work well, etc). Passive TJI seems to be a bit simpler in that the fueling doesn't need to adapt, it seems like maybe it won't be a guaranteed silver bullet that allows for lambda 1 everywhere all the time in retrofit applications but it would allow for better timing + more lambda 1 operation.

How much do you drive for any of those concerns to outweigh the hassle?

 

Or is this a theoretical discussion?

1 hour ago, Ben C34 said:

How much do you drive for any of those concerns to outweigh the hassle?

 

Or is this a theoretical discussion?

I think the problem is more like because I don't drive the car very much E85 becomes a problem. It's about to do a ~550 km road trip down to the CA grey market emissions lab though, and I plan on doing some road trips like that out to the local tracks for some driving instruction in the future. Water injection seems far too fraught with landmines for me, far too many stories of injector problems and other headaches to really want to deal with it. As far as emissions and fuel economy goes I understand that a car that doesn't get driven very much doesn't really need to get good fuel economy or good emissions but it would be nice to improve those as well as achieving more power output than I otherwise would on ~96 RON CA gasoline. It pains me to think about how easily the engine gets into boost enrichment right now, obviously with a tune it'll do better but it's a long way off from modern GDI turbo engines that can go as lean as 0.9 lambda at ~3000 RPM WOT.

Maybe retrofitting TJI becomes hilariously, wildly impractical but if it's really "just" a built bottom end, intake + exhaust VVT, a major revamp of the timing/fueling map to account for the different ignition delay/knock limit, and a weird-looking spark plug then maybe it's viable when I inevitably blow up my engine doing something dumb.

12 hours ago, GTSBoy said:

I would suggest it's a US$5000000 R&D exercise to come up with a workable design for retro to the RB26. If HKS make it work, it will cost about the same to buy it from them!

They'll give a good price, finger in the air estimate probably 80-100k USD. 

  • 2 years later...

The combustion engine isnt going anywhere, we'll transition to synthetic and or bio fuels / hybrids 

Honda tested at 40:1 afr and settled on 34:1 with a 16:1cr in a video online when F1 switched to E10 with TJI

TJI is the biggest thing to happen in ignition since the spark plug was invented 100yrs ago aside from high frequency ignition which is banned and expensive for large scale oems.

You wont have to change anything it'll be a retrofit and you'll be able to tune it on a crappy old fcon v like HKS have done with your existing bottom end

I dont think it will be expensive either - Mahle, Federal Mogul, Beru all seem to getting ready to cater to oem applications in anticipation of Euro7 emmission laws -

$5m ?

I found some for sale for a gas turbine engine from Champion for $350 USD others for $500 for a big German Gas turbine unit

I think it will def solve a lot of your issues running Cali's crap fuel esp in regards to knock not to mention the insane 47mpg HKS are quoting for the heritage RB 

The secret will be in the tune imo

 

On 3/17/2024 at 9:55 AM, DanGreen006 said:

The combustion engine isnt going anywhere, we'll transition to synthetic and or bio fuels / hybrids 

Honda tested at 40:1 afr and settled on 34:1 with a 16:1cr in a video online when F1 switched to E10 with TJI

TJI is the biggest thing to happen in ignition since the spark plug was invented 100yrs ago aside from high frequency ignition which is banned and expensive for large scale oems.

You wont have to change anything it'll be a retrofit and you'll be able to tune it on a crappy old fcon v like HKS have done with your existing bottom end

I dont think it will be expensive either - Mahle, Federal Mogul, Beru all seem to getting ready to cater to oem applications in anticipation of Euro7 emmission laws -

$5m ?

I found some for sale for a gas turbine engine from Champion for $350 USD others for $500 for a big German Gas turbine unit

I think it will def solve a lot of your issues running Cali's crap fuel esp in regards to knock not to mention the insane 47mpg HKS are quoting for the heritage RB 

The secret will be in the tune imo

 

What gas turbines have you seen this on? I work on a variety of turbines (GE, Siemens, Rolls Royce, Solar, Etc.) and our ignitors do not cost 350$ a pop nor do I understand how TJI would apply to a turbine. 

Edited by TurboTapin
On 3/20/2024 at 11:58 AM, TurboTapin said:

What gas turbines have you seen this on? I work on a variety of turbines (GE, Siemens, Rolls Royce, Solar, Etc.) and our ignitors do not cost 350$ a pop nor do I understand how TJI would apply to a turbine. 

Sorry not industrial gas turbines but large gas industrial generators MTU4000.   When i was looking up the pre chamber plugs i incorretly assumed this was a industrial turbine not generator
MTU-Onsite-Energy-Diesel-Generator-Set-Series-4000-800x600

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now


  • Latest Posts

    • Next on the to-do list was an oil and filter change. Nothing exciting to add here except the oil filter is in a really stupid place (facing the engine mount/subframe/steering rack). GReddy do a relocation kit which puts it towards the gearbox, I would have preferred towards the front but there's obviously a lot more stuff there. Something I'll have to look at for the next service perhaps. First time using Valvoline oil, although I can't see it being any different to most other brands Nice... The oil filter location... At least the subframe wont rust any time soon I picked up a genuine fuel filter, this is part of the fuel pump assembly inside the fuel tank. Access can be found underneath the rear seat, you'll see this triangular cover Remove the 3x plastic 10mm nuts and lift the cover up, pushing the rubber grommet through The yellow fuel line clips push out in opposite directions, remove these completely. The two moulded fuel lines can now pull upwards to disconnect, along with the wire electrical plug. There's 8x 8mm bolts that secure the black retaining ring. The fuel pump assembly is now ready to lift out. Be mindful of the fuel hose on the side, the hose clamp on mine was catching the hose preventing it from lifting up The fuel pump/filter has an upper and lower section held on by 4 pressure clips. These did take a little bit of force, it sounded like the plastic tabs were going to break but they didn't (don't worry!) The lower section helps mount the fuel pump, there's a circular rubber gasket/grommet/seal thing on the bottom where the sock is. Undo the hose clip on the short fuel hose on the side to disconnect it from the 3 way distribution pipe to be able to lift the upper half away. Don't forget to unplug the fuel pump too! There's a few rubber O rings that will need transferring to the new filter housing, I show these in the video at the bottom of this write up. Reassembly is the reverse Here's a photo of the new filter installed, you'll be able to see where the tabs are more clearing against the yellow OEM plastic Once the assembly is re-installed, I turned the engine over a few times to help build up fuel pressure. I did panic when the car stopped turning over but I could hear the fuel pump making a noise. It eventually started and has been fine since. Found my 'lucky' coin underneath the rear seat too The Youtube video can be seen here: https://www.youtube.com/watch?v=uLJ65pmQt44&t=6s
    • It was picked up on the MOT/Inspection that the offside front wheel bearing had excessive play along with the ball joint. It made sense to do both sides so I sourced a pair of spare IS200 hubs to do the swap. Unfortunately I don't have any photos of the strip down but here's a quick run down. On the back of the hub is a large circular dust cover, using a flat head screw driver and a mallet I prised it off. Underneath will reveal a 32mm hub nut (impact gun recommended). With the hub nut removed the ABS ring can be removed (I ended up using a magnetic pick up tool to help). Next up is to remove the stub axle, this was a little trickier due to limited tools. I tried a 3 leg puller but the gap between the hub and stub axle wasn't enough for the legs to get in and under. Next option was a lump hammer and someone pulling the stub axle at the same time. After a few heavy hits it released. The lower bearing race had seized itself onto the stub axle, which was fine because I was replacing them anyway. With the upper bearing race removed and the grease cleaned off they looked like this The left one looked pristine inside but gave us the most trouble. The right one had some surface rust but came apart in a single hit, figure that out?! I got a local garage to press the new wheel bearings in, reassemble was the opposite and didn't take long at all. Removing the hub itself was simple. Starting with removing the brake caliper, 2x 14mm bolts for the caliper slider and 2x 19mm? for the carrier > hub bolts. I used a cable tie to secure the caliper to the upper arm so it was out of the way, there's a 10mm bolt securing the ABS sensor on. With the brake disc removed from the hub next are the three castle nuts for the upper and lower ball joints and track rod end. Two of these had their own R clip and one split pin. A few hits with the hammer and they're released (I left the castle nuts on by a couple of turns), the track rod ends gave me the most grief and I may have nipped the boots (oops). Fitting is the reversal and is very quick and easy to do. The lower ball joints are held onto the hub by 2x 17mm bolts. The castle nut did increase in socket size to 22mm from memory (this may vary from supplier) The two front tyres weren't in great condition, so I had those replaced with some budget tyres for the time being. I'll be replacing the wheels and tyres in the future, this was to get me on the road without the worry of the police hassling me.
    • Yep, the closest base tune available was for the GTT, I went with that and made all the logical changes I could find to convert it to Naturally Aspirated. It will rev fine in Neutral to redline but it will be cutting nearly 50% fuel the whole way.  If I let it tune the fuel map to start with that much less fuel it wont run right and has a hard time applying corrections.  These 50% cuts are with a fuel map already about half of what the GTT tune had.  I was having a whole lot of bogging when applying any throttle but seem to have fixed that for no load situations with very aggressive transient throttle settings. I made the corrections to my injectors with data I found for them online, FBCJC100 flowing 306cc.  I'll have to look to see if I can find the Cam section. I have the Bosch 4.9 from Haltech. My manifold pressure when watching it live is always in -5.9 psi/inHg
    • Hi My Tokico BM50 Brake master cylinder has a leak from the hole between the two outlets (M10x1) for brake pipes, I have attached a photo. Can anyone tell me what that hole is and what has failed to allow brake fluid to escape from it, I have looked on line and asked questions on UK forums but can not find the answer, if anyone can enlighten me I would be most grateful.
    • It will be a software setting. I don't believe many on here ever used AEM. And they're now a discontinued product,that's really hard to find any easy answers on. If it were Link or Haltech, someone would be able to just send you a ECU file though.
×
×
  • Create New...