Jump to content
SAU Community

Recommended Posts

Hi,

You always hear about the hp of F1 engines and CART engines. I've heard anywhere between 800hp (approx 615kw) and 950hp (approx 730kw) for F1 engines and 750hp (approx 577kw) for CART engines. Any idea the level of torque these engines have. I think someone said a couple of years ago that F1 engines have around 700nm. I guess torque isn't as important due to the low overall weight. Has anyone have some info they can share.

Note: All hp/kw figures are at flywheel.

Cheers

Link to comment
https://www.sau.com.au/forums/topic/54694-torque-of-an-f1-engine/
Share on other sites

im pretty sure its 19,000 RPM, not that it would make much of a difference

Different teams use different rev limits depending on track/engine longevity etc..

so there is no set limit, but most teams run betwen 17000 and 19000 depending on the track.

if u watch f1 lately you would have seen they show live telemetry on the screen that shows speed and revs... pretty good to watch the revs rarely drop below about 13500 in most races.

The revs you see on the TV aren't accurate. ITV use the accustics of the engine to determine the RPM. Teams wouldn't want to give away how many revs their engines are producing to the opposition.

Check out

http://www.f1technical.net/article13.html

The revs you see on the TV aren't accurate. ITV use the accustics of the engine to determine the RPM. Teams wouldn't want to give away how many revs their engines are producing to the opposition.

Check out

http://www.f1technical.net/article13.html

i knew that all the teams are secretive about the specs of their cars, and was surprised when i saw the revs on the screen, you have just resolved that issue for me! i knew they would never reveal their revs :mad:

I once heard Martin Brudle say that the pistons in an F1 car about the size of a biscuit!

Hence how they get them to rev so hard.

Also the reason why they only last 200km ;) maybe 300km these days.

Actually, the piston size has has much to do with the displacement requirements too. The high revving has a lot to do with pnuematic lifters.

New regs say that engine has to be a 2.4L V8.

Simply, they are the old V10's with 2 pistons chopped off the end. This would save teams having to R&D engines from scratch, hence costing more money.

Yeah if it weren't for pnuematic valves they would have real issues reving high cause of valve bounce.

holy shit... 2.4L V8?? im interested in seeing what kind of power they'll end up putting out. But in the past, for example when the V10 3000cc rule was implemented the cars still pulled out record power and broke lap records, so the engines will still be poweful but ill miss that high pitched scream which they have down the straight... it wont be the same ;)

I heard these rules were put in for cost cutting and to attract more teams into the competition by making it cheaper to compete. Are there other reasons??

holy shit... 2.4L V8?? im interested in seeing what kind of power they'll end up putting out. But in the past, for example when the V10 3000cc rule was implemented the cars still pulled out record power and broke lap records, so the engines will still be poweful but ill miss that high pitched scream which they have down the straight... it wont be the same :D

I heard these rules were put in for cost cutting and to attract more teams into the competition by making it cheaper to compete. Are there other reasons??

Yes because ferrari can afford to spend billions on on part of their car when other teams have even less money for their whole car.

I don't think That figure of 400nm is right. The Honda VTR1000S SP2 is 99Kw/102NM, and that is a simple 1 liter production engine. There is no way a multi million dollar motor is only going to put out around 400NM. But in saying that I don't know what they put out.

I also heard on RPM that teams are going to run a breakaway series in 2006 (Date?).

The figures are pretty much on par. F1 engines really lack torque. Engine manufacturers chase after power, not torque.

The breakaway series is after the current Concord agreement which expires after 2008. It's all about Bernie Ecclestone's profit from the F1 series. The teams want a more bigger slice of the action.

I was watching the Indy cars for a little bit before work last Sunday, and they say they were running Turbo 2.4ltr V8's??? Weird combo, altho i understand that higher revving engines seem to have less displacement, but i thought it was interesting to see a small capacity V8 with a Turbo and they said around 700hp :D

I like it. Compact'ish V8 with a blower, think that would be cool to see in a production car. Altho it seems torque may be a problem

So is Indy the CART thing people are talking about?

Are the F1's going to go Turbo again? Oh yeah, the Indy engines were running STUPID boost, i must have heard the commentator wrong, 30-40 psi??? Must have heard wrong...

cheers.

im pretty sure that turbo's arnt going to ever be allowed in F1. They have rules against the forceful manipulation of air.

I remember reading about the F1 fan car, which basically used a gaint fan to suck up air from the ground (thus keeping it down), that model was scraped due to the rule that was put in.

faq1.jpg

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now


  • Similar Content

  • Latest Posts

    • I did end up getting it sorted, as GTSBoy said, there was a corroded connection and wire that needed to be replaced. I ended up taking out the light assembly, giving everything a good clean and re-soldered the old joints, and it came out good.
    • Wow, thanks for your help guys 🙏. I really appreciate it. Thanks @Rezz, if i fail finding any new or used, full or partial set of original Stage carpets i will come back to you for sure 😉 Explenation is right there, i just missed it 🤦‍♂️. Thanks for pointing out. @soviet_merlin in the meantime, I received a reply from nengun, and i quote: "Thanks for your message and interest in Nengun. KG4900 is for the full set of floor mats, while KG4911 is only the Driver's Floor Mat. FR, RH means Front Right Hand Side. All the Full Set options are now discontinued. However, the Driver's Floor Mat options are still available according to the latest information available to us. We do not know what the differences would be, but if you only want the one mat, we can certainly see what we can find out for you". Interesting. It seems they still have some "new old stock" that Duncan mentioned 🤔. I wonder if they can provide any photos......And i also just realized that amayama have G4900 sets. I'm tempted too. 
    • Any update on this one? did you manage to get it fixed?    i'm having the same issue with my r34 and i believe its to do with the smart entry (keyless) control module but cant be sure without forking out to get a replacement  
    • So this being my first contribution to the SAU forums, I'd like to present and show how I had to solve probably one of the most annoying fixes on any car I've owned: replacing a speedometer (or "speedo") sensor on my newly acquired Series 1 Stagea 260RS Autech Version. I'm simply documenting how I went about to fix this issue, and as I understand it is relatively rare to happen to this generation of cars, it is a gigantic PITA so I hope this helps serve as reference to anyone else who may encounter this issue. NOTE: Although I say this is meant for the 260RS, because the gearbox/drivetrain is shared with the R33 GTR with the 5-speed manual, the application should be exactly the same. Background So after driving my new-to-me Stagea for about 1500km, one night while driving home the speedometer and odometer suddenly stopped working. No clunking noise, no indication something was broken, the speedometer would just stop reading anything and the odometer stopped going up. This is a huge worry for me, because my car is relatively low mileage (only 45k km when purchased) so although I plan to own the car for a long time, a mismatched odometer reading would be hugely detrimental to resale should the day come to sell the car. Thankfully this only occurred a mile or two from home so it wasn't extremely significant. Also, the OCD part of me would be extremely irked if the numbers that showed on my dash doesn't match the actual ageing of the car. Diagnosing I had been in communication with the well renown GTR shop in the USA, U.P.garage up near University Point in Washington state. After some back and forth they said it could be one of two things: 1) The speedometer sensor that goes into the transfer case is broken 2) The actual cluster has a component that went kaput. They said this is common in older Nissan gauge clusters and that would indicate a rebuild is necessary. As I tried to figure out if it was problem #1, I resolved problem #2 by sending my cluster over to Relentless Motorsports in Dallas, TX, whom is local to me and does cluster and ECU rebuilds. He is a one man operation who meticulously replaces every chip, resistor, capacitor, and electronic component on the PCB's on a wide variety of classic and modern cars. His specialty is Lexus and Toyota, but he came highly recommended by Erik of U.P.garage since he does the rebuilds for them on GTR clusters.  For those that don't know, on R32 and R33 GTR gearboxes, the speedometer sensor is mounted in the transfer case and is purely an analog mini "generator" (opposite of an alternator essentially). Based on the speed the sensor spins it generates an AC sine wave voltage up to 5V, and sends that via two wires up to the cluster which then interprets it via the speedometer dial. The signal does NOT go to the ECU first, the wiring goes to the cluster first then the ECU after (or so I'm told).  Problems/Roadblocks I first removed the part from the car on the underside of the transfer case (drain your transfer case fluid/ATF first, guess who found out that the hard way?), and noted the transfer case fluid was EXTREMELY black, most likely never changed on my car. When attempting to turn the gears it felt extremely gritty, as if something was binding the shaft from rotating properly. I got absolutely no voltage reading out of the sensor no matter how fast I turned the shaft. After having to reflow the solder on my AFM sensors based on another SAU guide here, I attempted to disassemble the silicone seal on the back of the sensor to see what happened inside the sensor; turns out, it basically disintegrated itself. Wonderful. Not only had the electrical components destroyed themselves, the magnetic portion on what I thought was on the shaft also chipped and was broken. Solution So solution: find a spare part right? Wrong. Nissan has long discontinued the proper sensor part number 32702-21U19, and it is no longer obtainable either through Nissan NSA or Nissan Japan. I was SOL without proper speed or mileage readings unless I figured out a way to replace this sensor. After tons of Googling and searching on SAU, I found that there IS however a sensor that looks almost exactly like the R33/260RS one: a sensor meant for the R33/R34 GTT and GTS-T with the 5 speed manual. The part number was 25010-21U00, and the body, plug, and shaft all looked exactly the same. The gear was different at the end, but knowing the sensor's gear is held on with a circlip, I figured I could just order the part and swap the gears. Cue me ordering a new part from JustJap down in Kirrawee, NSW, then waiting almost 3 weeks for shipping and customs clearing. The part finally arrives and what did I find? The freaking shaft lengths don't match. $&%* I discussed with Erik how to proceed, and figuring that I basically destroyed the sensor trying to get the shaft out of the damaged sensor from my car. we deemed it too dangerous to try and attempt to swap shafts to the correct length. I had to find a local CNC machinist to help me cut and notch down the shaft. After tons of frantic calling on a Friday afternoon, I managed to get hold of someone and he said he'd be able to do it over half a week. I sent him photos and had him take measurements to match not only the correct length and notch fitment, but also a groove to machine out to hold the retentive circlip. And the end result? *chef's kiss* Perfect. Since I didn't have pliers with me when I picked up the items, I tested the old gear and circlip on. Perfect fit. After that it was simply swapping out the plug bracket to the new sensor, mount it on the transfer case, refill with ATF/Nissan Matic Fluid D, then test out function. Thankfully with the rebuilt cluster and the new sensor, both the speedometer and odometer and now working properly!   And there you have it. About 5-6 weeks of headaches wrapped up in a 15 minute photo essay. As I was told it is rare for sensors of this generation to die so dramatically, but you never know what could go wrong with a 25+ year old car. I HOPE that no one else has to go through this problem like I did, so with my take on a solution I hope it helps others who may encounter this issue in the future. For the TL;DR: 1) Sensor breaks. 2) Find a replacement GTT/GTS-T sensor. 3) Find a CNC machinist to have you cut it down to proper specs. 4) Reinstall then pray to the JDM gods.   Hope this guide/story helps anyone else encountering this problem!
    • So this being my first contribution to the SAU forums, I'd like to present and show how I had to solve probably one of the most annoying fixes on any car I've owned: replacing a speedometer (or "speedo") sensor on my newly acquired Series 1 Stagea 260RS Autech Version. I'm simply documenting how I went about to fix this issue, and as I understand it is relatively rare to happen to this generation of cars, it is a gigantic PITA so I hope this helps serve as reference to anyone else who may encounter this issue. NOTE: Although I say this is meant for the 260RS, because the gearbox/drivetrain is shared with the R33 GTR with the 5-speed manual, the application should be exactly the same. Background So after driving my new-to-me Stagea for about 1500km, one night while driving home the speedometer and odometer suddenly stopped working. No clunking noise, no indication something was broken, the speedometer would just stop reading anything and the odometer stopped going up. This is a huge worry for me, because my car is relatively low mileage (only 45k km when purchased) so although I plan to own the car for a long time, a mismatched odometer reading would be hugely detrimental to resale should the day come to sell the car. Thankfully this only occurred a mile or two from home so it wasn't extremely significant. Also, the OCD part of me would be extremely irked if the numbers that showed on my dash doesn't match the actual ageing of the car. Diagnosing I had been in communication with the well renown GTR shop in the USA, U.P.garage up near University Point in Washington state. After some back and forth they said it could be one of two things: 1) The speedometer sensor that goes into the transfer case is broken 2) The actual cluster has a component that went kaput. They said this is common in older Nissan gauge clusters and that would indicate a rebuild is necessary. As I tried to figure out if it was problem #1, I resolved problem #2 by sending my cluster over to Relentless Motorsports in Dallas, TX, whom is local to me and does cluster and ECU rebuilds. He is a one man operation who meticulously replaces every chip, resistor, capacitor, and electronic component on the PCB's on a wide variety of classic and modern cars. His specialty is Lexus and Toyota, but he came highly recommended by Erik of U.P.garage since he does the rebuilds for them on GTR clusters.  For those that don't know, on R32 and R33 GTR gearboxes, the speedometer sensor is mounted in the transfer case and is purely an analog mini "generator" (opposite of an alternator essentially). Based on the speed the sensor spins it generates an AC sine wave voltage up to 5V, and sends that via two wires up to the cluster which then interprets it via the speedometer dial. The signal does NOT go to the ECU first, the wiring goes to the cluster first then the ECU after (or so I'm told).  Problems/Roadblocks I first removed the part from the car on the underside of the transfer case (drain your transfer case fluid/ATF first, guess who found out that the hard way?), and noted the transfer case fluid was EXTREMELY black, most likely never changed on my car. When attempting to turn the gears it felt extremely gritty, as if shttps://imgur.com/6TQCG3xomething was binding the shaft from rotating properly. After having to reflow the solder on my AFM sensors based on another SAU guide here, I attempted to disassemble the silicone seal on the back of the sensor to see what happened inside the sensor; turns out, it basically disintegrated itself. Wonderful. Not only had the electrical components destroyed themselves, the magnetic portion on what I thought was on the shaft also chipped and was broken. Solution So solution: find a spare part right? Wrong. Nissan has long discontinued the proper sensor part number 32702-21U19, and it is no longer obtainable either through Nissan NSA or Nissan Japan. I was SOL without proper speed or mileage readings unless I figured out a way to replace this sensor. After tons of Googling and searching on SAU, I found that there IS however a sensor that looks almost exactly like the R33/260RS one: a sensor meant for the R33/R34 GTT and GTS-T with the 5 speed manual. The part number was 25010-21U00, and the body, plug, and shaft all looked exactly the same. The gear was different at the end, but knowing the sensor's gear is held on with a circlip, I figured I could just order the part and swap the gears. Cue me ordering a new part from JustJap down in Kirrawee, NSW, then waiting almost 3 weeks for shipping and customs clearing. The part finally arrives and what did I find? The freaking shaft lengths don't match. $&%* I discussed with Erik how to proceed, and figuring that I basically destroyed the sensor trying to get the shaft out of the damaged sensor from my car. we deemed it too dangerous to try and attempt to swap shafts to the correct length. I had to find a local CNC machinist to help me cut and notch down the shaft. After tons of frantic calling on a Friday afternoon, I managed to get hold of someone and he said he'd be able to do it over half a week. I sent him photos and had him take measurements to match not only the correct length and notch fitment, but also a groove to machine out to hold the retentive circlip. And the end result? *chef's kiss* Perfect. Since I didn't have pliers with me when I picked up the items, I tested the old gear and circlip on. Perfect fit. After that it was simply swapping out the plug bracket to the new sensor, mount it on the transfer case, refill with ATF/Nissan Matic Fluid D, then test out function. Thankfully with the rebuilt cluster and the new sensor, both the speedometer and odometer and now working properly!   And there you have it. About 5-6 weeks of headaches wrapped up in a 15 minute photo essay. As I was told it is rare for sensors of this generation to die so dramatically, but you never know what could go wrong with a 25+ year old car. I HOPE that no one else has to go through this problem like I did, so with my take on a solution I hope it helps others who may encounter this issue in the future. For the TL;DR: 1) Sensor breaks. 2) Find a replacement GTT/GTS-T sensor. 3) Find a CNC machinist to have you cut it down to proper specs. 4) Reinstall then pray to the JDM gods.   Hope this guide/story helps anyone else encountering this problem!
×
×
  • Create New...