Jump to content
SAU Community

Recommended Posts

http://www.autoblog.com/2005/11/27/next-91...rbine-geometry/

http://digg.com/tech_news/Porsche_s_new_tu...ogy_for_the_911

Next 911 Turbo to feature Variable Turbine Geometry

November 16 of this year marked the day a century ago that Dr. Alfred Buchi received the first patent for an exhaust gas turbocharger. Porsche will be celebrating the turbo's 100-year anniversary a little late when it introduces the next 911 Turbo sometime next year with Variable Turbine Geometry. This technology allows the angle of the compressor's turbine blades to continually adjust. While some diesel engines have enjoyed this technology since the Nineties, the higher exhaust gas temperatures created by gasoline engines necessitated the creation of new heat-resistant materials to handle the hotness. Porsche and Borg Warner Turbo Systems were able to overcome the heat issue and have developed a VTG turbo system that will be incorporated into the next 911 Turbo. The VTG turbo will allow Porsche's flat-six to mimic a twin-turbo setup with a much broader torque curve and more flexible powerband than a standard single turbo could provide on its own. Power ratings for the new VTG turbo engine haven't been released and probably won't be until the new 911 Turbo surfaces sometime next year.

2051115.002.mini1L.jpg

I'd love to see a working diagram of one of these turbos in more detail.

Link to comment
https://www.sau.com.au/forums/topic/127801-variable-turbine-geometry/
Share on other sites

I'd love to see a working diagram of one of these turbos in more detail.

Your wish is my command.

http://www.porsche.com/all/masterwerk/flas...&height=513

Click Masterwerk once the Flash demo has finished loading.

Then under Act One click Variable Turbine Geometry.

I thought the new 997 Turbo was running twin VTG's. Its only a single?

While I realise that using a VTG system can mimic a twin-turbo setup with a much broader torque curve and more flexible powerband than a standard single turbo could provide on its own....it begs the question, why not just run twin turbos? Occams Razor, etc......

On any V engine (and a boxer engine especially), you hit plumbing problems with a single turbo. What's the benefit of going back to a single turbine rather than running a pair of turbines?

Imagine this engine with a pair of VTG turbos?

It's not the turbine blades that move on VNT turbos, it's the blades around the edge of the turbine that direct the exhaust gas on to it. It'd be impossible to do it the other way around.

Correct. In commercial aircraft engines they are called Nozzle Guide Vanes ( NGV's ) in the turbine or Variable Inlet Guide Vanes ( VIGV's ) in the Compressor. They change the angle of attack of the air going into the blades ( vanes in the case of turbo's ). Keeping in mind that in aircraft engines, the geometry of the turbine is not variable because of reliability and cost.

I'll be very interested to see how this goes into the future !!

The engine is going to need to run VERY cleanly to stop the guide vanes from siezing up with carbon build-up and I would imagine that the turbo service life on the new 911 would probably be an overhaul at something like 60,000km intervals.

The engine is going to need to run VERY cleanly to stop the guide vanes from siezing up with carbon build-up and I would imagine that the turbo service life on the new 911 would probably be an overhaul at something like 60,000km intervals.

Latest article I read, Porsche quotes 161,000km (100,00miles) for replacement or complete overhaul of the turbos :

Latest article I read, Porsche quotes 161,000km (100,00miles) for replacement or complete overhaul of the turbos :

I'd be extremely impressed if they can hold to that !!! ( and maintain full operating efficiency ).

These Garret VNT turbos have been around for about twenty years, nothing really new here.

They are not really suitable for petrol engines which is why Garret are pushing their GT ball bearing turbos for performance petrol engines, and the VNT turbos only for diesel engines. If these things worked as well as people think they do, companies like HKS would be offering them.

I ran a Garret VNT turbo on my Ford Laser for around two years so I can speak from plenty of practical experience.

You can order one from any Nissan dealer, part number is 14411-VC100 (charger assy-turbo). Back in 2003 it cost me $1454.55.

These variable vane turbos are the standard turbo fitted to the 4.0 litre Nissan Patrol diesel engine in Australia, and that particular engine produces 150Kw, so they are a rather small turbo. Two of these would be required on a larger engine.

Porsche seem to have made it work, where nobody else has. No doubt it took a lot of fairly sophisticated engine management and a lot of development. Don't think you can just bolt one on to your Skyline and get the same sort of results without the control system to make it work properly. There is far more to it han just hooking up a standard wastegate actuator to the vane control arm.

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now


  • Similar Content

  • Latest Posts

    • Kinkstah, no, coilovers aren't illegal, especially as a bolt straight in. The illegal part will be if they're altering suspension geometry beyond factory limits, or the ride height is not legal.   Sounds like the blue slipper just didn't want to deal with any later possibility of mods appearing on the car.
    • The problem has always been that coilovers are able to be adjusted, almost at any time, to be too low. Most people who ever get/got defected for/with coilovers were actually afoul of the minimum ride height rule. So the interpretation by cops/inspectors was always that it is pointless to allow numpty to raise his coilovers and get the car inspected/cleared, then just drop them back down again as soon as they get around the corner from the inspection station.  This led to the interpretation that they were illegal unless rendered such that they can't be adjusted (ie, collars welded to the body, that sort of thing). That may or may not have ever actually been the official line, but I'm pretty sure it's not considered to be a solution these days. Coilovers themselves fall under clause 3.2 b of that manual, because they are an "installation of a variable ride height system" and they don't fit the exclusions in that clause (which point to air springs and other pneumatic adjusters). So, as per previous statements, they require engineering cert to be legal on the road. Once you have such cert, provided you do not adjust them outside the height range covered by the cert, you are OK. Without, you have an unroadworthy vehicle.
    • Here E10 is the cheapest fuel. And general advice is to not use it unless you hate your car. From what I remember it clogs up stuff in the fuel system or injectors?  With US/Canada being E10 across the board, does that mean that all fuel there is terrible?
    • Sorry, are coilovers ACTUALLY ILLEGAL in NSW? They aren't in Vic, as long as they retain 70% of stock travel and the car is above 100mm off the ground. Does NSW actually have a law making coilovers actually illegal? RWC/Blue Slip/Engineering people not knowing the actual f**king laws boils my blood. Demand them to point to the documentation that states a coilover is illegal. (it may exist in NSW ) Edit: I checked. They aren't. https://www.nsw.gov.au/sites/default/files/2021-02/RMS-infosheet-light-vehicle-modifications-manual-suspension-and-ride-height.pdf
×
×
  • Create New...