Jump to content
SAU Community

Recommended Posts

your piping only need be the same size as the smallest restriction after the turbo charger....ie why go 3 inch when your throttle body is 2.75....it ain't gonna fit thru there any faster by using 3 inch..... not only that the hotter the air the more it expands so in theory you would want to compress it a little the cooler it got....in theory

so say 3 inch from turbo to cooler means one reducer off the turbo.. then go from 2.75 off the cool side of the intercooler to the throttle body , so two reducers one on the turbo and one after the intercooler will keep the air flowing at its optimum rate given what you have descibed....sorry. i studied all this bs for a science exam...never thought id need it. ;)

may i add you may have trouble gettin the 3 inch pipe up, overbetween the radiator fan and the cam cover....having to trim the fan blades a little.

Edited by nizmonut
your piping only need be the same size as the smallest restriction after the turbo charger....ie why go 3 inch when your throttle body is 2.75....it ain't gonna fit thru there any faster by using 3 inch..... not only that the hotter the air the more it expands so in theory you would want to compress it a little the cooler it got....in theory

so say 3 inch from turbo to cooler means one reducer off the turbo.. then go from 2.75 off the cool side of the intercooler to the throttle body , so two reducers one on the turbo and one after the intercooler will keep the air flowing at its optimum rate given what you have descibed....sorry. i studied all this bs for a science exam...never thought id need it. :D

I'll assume your addressing your post to me :)

I didn't mean to flare the post IC pipe to larger then TB size just for viscosity's sake...

Most TB's are larger then the comp cover outlet, as are most IC inlet / outlet. This is why most ppl fit smaller pipework from turbo -> IC inlet (with a flare) and then use larger pipework from IC outlet -> TB.

Again, I'm not suggesting using bigger pipes then your TB. My above thoughts are simply trying to legitimize the already "normal practice" of having IC -> TB pipes, the same width as the TB, and the turbo -> IC pipe, the same width as the turbo outlet OD (which as mentioned, is invariably a smaller OD then the TB)

...may i add you may have trouble gettin the 3 inch pipe up, overbetween the radiator fan and the cam cover....having to trim the fan blades a little.

You may, but just like a few other ppl posting in this thread, I've a GTR with stock ~3.25 inch piping.

Edited by GeeTR
I'll assume your addressing your post to me :D

I didn't mean to flare the post IC pipe to larger then TB size just for viscosity's sake. Most TB's are larger then the comp cover outlet, as are most IC inlet / outlet. This is why most ppl fit smaller pipework from turbo -> IC inlet (with a flare) and then use larger pipework from IC outlet -> TB.

Again, I'm not suggesting using bigger pipes then your TB. My above thoughts are simply trying to legitimize the already "normal practice" of having IC -> TB pipes, the same width as the TB, and the turbo -> IC pipe, the same width as the turbo outlet OD (which as mentioned, is invariably a smaller OD then the TB)

You may, as just like a few other ppl posting in this thread, I've a GTR with stock ~3.25 inch piping.

just to clarify as it is late here and i have been working on my gtr powered gts4 most of the day.....

aforementioned post was for turboedsloth, it was he that asked for idea's parameter's to best suit his rb20det not his dream car powered by a rb26dett.

stating the obvious. yes i would hope all tb's are larger than comp cover outlet.....i'm sure i said .....

"smallest restriction AFTER the turbo charger"

when i said ''reducer from the turbo to the IC'", common sense would dictate one turn's it around to create a flare.

however when i said "hot side of the intercooler" common sense would apply again...to reduce his 3 inch intercooler outlet down to the tb's 2.75 inch diameter.

....viscosity is fluid.....velocity is speed....

Edited by nizmonut

im ready to order my ARE type 71 cooler. I just need to know what size in/out pipes to get. I have to4z which is 2.5 inch i belive and Q45 TB which is 90mm. So im assuming inlet is 2.5 and outlet is 3.5 or maybe even 3.75?? Please help

There is no point going to a larger diameter than your widest point otherwise (ie, throttle body). All you do with big piping is increase the volume (and hence mass) of air in the pipe. What happens when you suddenly crack the the throttle wide open? All that air has to go from stopped, to moving. The more air you have the more it weighs and the longer it takes to get moving.

I would say maintain turbo outlet diameter to IC, and maybe go up to TB size after the IC.. either that or do your diameter switch just before the crossover pipe. The limiting factor is going to be how much air you can get through the turbo's compressor elbow and whether your intercooler is restrictive.. not the piping itself.

Caution.. this may require some thinking!

there is not a real 'correct' size! Like everything, its a compromise. I have a formula somewhere in my books about pipe size.

It is all based about airflow though the engine. then u add factors like psi drop across cooler and turbo effeceintcy.

ehh? you say..

ok, the bigger pipes will flow more air, small pipes will make boost faster(less pipe size to fill), medium pipes try and make the best of both, some run big sizes to the intercooler and the same size as the throttle as a return..

Then I read an aircon journal about pipe flow restrictions and bends. it said that a manderal bend of a small constant radius (like most cooler pipe bends) has about the same flow restriction as 6m of straight pipe.. hmm. so now we know bends are evil, but needed.

Then there is the argument about less dense hot air needing more space, and the argument about denser cooled air flows slower so it is good to have a big pipe to aid the 'thicker' air..

Then you have air speed, small turbo's pump lots of air down low and dont require a large pipe, but require a bigger pipe higher in the revs due to the massive compressor speed needed to make enough boost to feed the engine due to its small size.,

because of the speed of air needed, carefull consideration is paramount.

then big turbos change it all again.. the big pipes will help make big HP, but have a spongy throttle coming onto boost. the compressor spins heaps slower, and pumps air best above 10ish PSI boost. too small a pipe will choke the poor thing!

Now that i have opened a huge can of worms.. i'm goin to leave u!

In a couple of days, I will try and find my books! i will summerise it and post it up!

In a couple of days, I will try and find my books! i will summerise it and post it up!

If you could!!! Iv done my crash course in fluid dynamics, but still believe without quantitative testing, its all gibberish and "what my best mates GF's baby sister did'ed full seek" Im still waiting for some bored mech eng student to produce some FAE models. This crap see,s like its up GTRGeoff's ally actually :)

Edited by GeeTR

Maybe give Richard at A.R.E. a call..........after all he built the intercoolers setups for the top 3 hp cars at Summernats 2008.

He also supplied me with a 530 hp rated intercooler with 2.5 inch inlet and outlet end tanks with associated 2.5 inch piping. Interestingly, these pipe sizes are also in line with Buschar Racing's optimum pipe sizes in their back to back dyno testing on an EVO with around 600 hp.

Just adding some info as I was asked to. This is more than a fluid flow problem as it involves some thermodynamics as well.

Ignore the effects of hot piping as the air flow is so fast that it has almost no time for heat to exchange.

As the air exits the compressor housing it also usually runs into a larger pipe. This has good implications as the air when it expands gets cooler, just like refrigeration uses a capillary tube into an expansion pipe to create the cooling effect in a fridge. Also when the air enters the larger pipe it increases static pressure head with a drop in velocity, so pressure increases a small amount. Simply put P1xV1=P2xV2

So the effect of the air expanding both increases the pressure/density and reduces temperature with increase in density.

The same again happens through the intercooler which also pulls more heat out of the air making it more dense again.

So we have an air charge that has expanded a couple of times and had a cooling process or 2 thrown in, hopefully with minimal pressure drop across the intercooler (efficiency of design) with maximum cooling.

So, does the size of the piping need to be larger/smaller exiting the intercooler? What size is about right? Every bend in the piping attracts a pressure drop due to restriction depending on the sharpness of the angle. Also every inch of straight piping exhibits a phenomena called turbulent wall growth which means the pipe appears to become smaller along its length. Even with the increased density the smaller volume of the charge means the entry and exit should be about the same without causing pressure drop due to increased viscosity.

About 3 inches (75mm) is considered a good size up to 800hp. The standard radiuses for 3" piping are of a gentle enough radius that they have minimal effect for the diameter of the pipe and the diameter itself can deliver sufficient flow even with losses due to length.

Space is a problem if you continue to use the over engine routing so 2.5" (60mm) will do if your power expectation is not massive...say below 500hp or about 300rwkw for a system without too many bends.

Geoff covered it pretty well, I would add that I saw a Honda drag car make 750 bhp using 2" intercooler pipework last year when I was in the US. It had a long run with an ice box in the passenger footwell, so they kept the pipe volume down as much possible without affecting the power output.

Cheers

Gary

yep. Geoff got it right.

He said what I was tring to say(he is a massive bunch smarter with this). It just goes to show that with some strong understanding of what happens, well it does wonders... My book has a whole page of numbers and fomula's to get to a base point which needs to then be understood.. The problem is that you cannot get all the correct info to produce the 'most' correct answer. Because the engine revs across such a wide range, the perfect size pipe is at best a bad compromise.

and because a car ran XXX hp with a set-up doesn't mean it cant be better, or be chocking, or be right on the money.

thanks Geoff!

Aaargghh, I cant find my book,. Its on old pump book from 1950ish by a german author. it covers fluids, solids and air.

anyhow, I did find some scribbles that I made, they were in my 'Maxium boost' book,and He makes reference to cooler pipes, but its only a quick skim over it. He doesn't make much hooharr about it.. perhaps there is a point to that! Perhaps it just isn't that critical like i thought..

The german dude was saying that the difference between a 2.5" and 3" pipe made minimal gain unless all components flowed well with a very low pressure drop. Bends, cooler and throttle! The scribles that i got on my paper make reference to a 2" pipe good for 550ish cranck HP and 3" good for 900ish. both with very little prssure drop.

Which is exactly what Geoff said! On ya mate!

  • 1 month later...
So, does the size of the piping need to be larger/smaller exiting the intercooler? What size is about right? Every bend in the piping attracts a pressure drop due to restriction depending on the sharpness of the angle. Also every inch of straight piping exhibits a phenomena called turbulent wall growth which means the pipe appears to become smaller along its length. Even with the increased density the smaller volume of the charge means the entry and exit should be about the same without causing pressure drop due to increased viscosity.

wow this is alot more technical than i thought. let me just make sure my retarded mind got around this ok. so the increase in pipe diameter is to counteract the overall length of the pipe, number and severity of the bends??

the only question i have, which is the point ive been curious on since the start of this thread. does the larger pipe diameter have a noticeable affect on throttle response?? im not thinking of 800hp race motors, rather the basic upgrades streeter as most ppl would have. pretty much the sort of setup that inspired turboedsloth to start the thread.

PS nice write up there GTRgeoff. its a little technical to noobs like me but definelty cleared up things

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now


  • Similar Content

  • Latest Posts

    • For these last 7 years of ownership, I've always had to use a small scissor jack under one of the front tow hooks to raise the front just enough so my low-profile jack fits under to reach my subframe jack point. I'm beginning to get annoyed of always having to do this. Are there any lower low-profile jacks that fit under the gtr lip on a dropped car?
    • Seat of the pants assessment of the new intake: The car is way less "doughy" when hitting the loud pedal, especially off idle when stopped or in traffic, I did use a cheapo lazer thermal thingo to measure the temp around where the pod filter got its air, it was between 55 - 60°C, in saying this the car was shut off and not moving, so the OEM intake pipe was not supplying any fresh air to where the pod was when the car was at least moving A weird bonus was induction noise on the throttle in the cabin increased a bit,  I was worried that I was actually going to lose some of that induction noise I love so much, outside though, when I got the daughter to do a WOT drive by pass for me, the induction noise has increased alot when on the throttle, not quite ITB doort, but well up there I'm extremely happy with the results and have been exploring the country roads in the region  As for house mods: 1.New front fence is up and is awesome, it really upgraded how the joint looks from the street, and the added security is nice 2. Electricians have replace some interior lights, and with more lighting in the garage, a few new motion detecting lights out the front above the garage, front room, and at the front door, which I have already found heaps helpful coming and going, also now has fancy pants CCTV all round the house The only hold point for power though is the solar and batteries due to supply issues, although this will happen over the next few weeks 3. I have done a heap of landscaping out the front and I'm almost ready to do a new small retaining wall with some nice blocks to replace the brick and cemented in rocks around the raised garden beds cemented in river stone "was the fashion at the time" the house was built. I currently have a pallet of retaining wall blocks and 2 bulka bags of 20mm blue metal to replace the wood chip that is in the raised garden beds around the house 4. I now have 3 big raised garden beds for out the back to grow some vegetables, about 70cm high, 200cm long and 100cm wide 5. My 2 compost bins are already pretty full with brown, green and kitchen waste from the landscaping I'vedone so far, but they will probably take a few months to break down, so anything else that gets chopped, trimmed, and kitchen waste will just start filling the base of the raised garden beds to about 30cm before I start throwing 40cm of good compost, and stuff, for the vegetables to grow in, I'll need a few ton of compost and soil, but the local supplier can sent me bulka bags of the stuff Basically the logs, wood chips and a few strategically placed rocks for drainage, will give the beds some good organic materials down low to break down over time, and they will hold moisture during the warmer months to save the water in my big arse water tank if we don't get alot of rain So, all in all, the car and house mods are going well, and I'm really enjoying being retired, I sleep in too 0700 and slowly plod around inside until I feel like actually doing anything, and only work in the yard for as long as want, which has actually been alot over the last few weeks,  although when you look at it, it seems that not a huge amount of work has been done,  until I look at the before I started the work pics Happy days and good times indeed 
    • hahaha yeah. Plan is to get side skirts and probably just rear pods. But going to do them one-by-one. I've got a set that I really like from RHDJapen, but that one isn't shipped to AU. So need to find someone who can get it for me
    • Here's an idea, answer the questions I asked you as they are trying to work out WHY the LSD will be binding up in a straight line.
×
×
  • Create New...