Jump to content
SAU Community

Recommended Posts

Hi guys

I have been through almost every BOV topic / post / thread on this and the sylineowners.com forum ad infinitum, but still have not seen any discussion on the below:

Here's a little background info: I have an R33 GTST with...

2835Pro S set to 1.1 Bar

HKS induction

Z32 AFM

Apexi PFC / Boost control kit (and Datalogit on the way)

ARC Frount Mount

HKS SSQV BOV!!

Plus other bits that are not really relevant to this discussion

My tuner has plumbed the boost control kit into pre intercooler piping, basically just off the turbo (boost gauge on PFC commander never shows vacuum!), which I can understand the reasoning - you see actual boost pressure from the turbo, not post Intercooler / throttle body boost). Also, all recirc piping has been removed / blanked off, so I can't really head back down the recirc route.

Because of this new "plumb boost feed directly off turbo" method, I now see massive spikes of 1.9 Bar plus massive flutter on gear change (you wouldn't normally see this when the boost controller is tee'd off the manifold). I'm guessing here that the BOV is not opening enough (it does open a little though).

So, there are two things to note with this issue:

1. HKS SSQV. Now I don't want to go into recirc / atmo discussions (as we've all seen multiple different theories here :blink: ) so can anyone tell me if this BOV can discharge the excess boost (1.1 Bar) effeciently? One thing I've noted with this BOV as well, is that the pressure generated by the turbo pushes against the piston, keeping it closed. So in theory, wouldn't manifold vacuum have to be greater than the boost pressure to pull the piston out?

2. 1.9 Bar being measured at the turbo. Surely this is bad?! For the guys that do not run a BOV, when the throttle body is closed, this equates to (I assume that a closed throttle has an area of 25mm / 0.025m (radius) squared times pi = 0.001963m2):

Pressure = Force x Area

1.9 x .98 (to get atmospheres) = Force x 0.001963

1.82 / 0.001963 = 927 N

Force = Mass x Acceleration

927 = Mass x 9.8m/s/s (gravity)

Therefore Mass = approx 100Kg?!

So an instantaneous mass of 100Kg is either being applied to the throttle butterfly / throttle butterfly pin, or the turbo blades?!?! Even if my theory of obtaining a figure for mass is incorrect, there can be no argument that 927N of force is being applied to either / both these parts, instantaneously...

Has anyone else measured boost spikes on the turbo side, or is there something completely wrong with my setup?? Thoughts / input on my force theory would be welcomed, as would an idea on an appropriate atmo BOV to vent the right amount of boost...

Cheers

Steve

P.S. I have now changed into my flame-retardant suite - let the burring commence! :)

-20 points for doing math on NY eve :blink::)

Edit: I should prolly post something worthwhile.

Those BOV's have been used on cars running more boost then that.

The reversion and boost spike your seeing is clearly due to your BOV not opening properly. Check the vacuum feed your using (between TB and motor yes?) Check the BOV on the bench with a vacuum pump maybe?

The trick for easy 100% workability would be to use a recirc BOV, not an atmo one... but you don’t wanna hear that :D

Your calcs could be correct, but the way the comp wheel is shaped means pulses can go backwards through it much easier (iv heard) and air ain't that viscous

my 2 cents

Edited by GeeTR

You havnt taken into account that there is vacuum on the other side of the throttle plate, so that force is more like 150kg. I dont think a boost spike like that woiuld be particularly uncommon, its just that people dont usually measure it. Maybe try blocking the BOV altogether, and ill bet it goes to 3bar.

Kilograms are not a measure of force guys. All you've calculated is the mass you'd have to apply a force of 927N to in order to accelerate it at 9.8m/s/s in ideal conditions, which has nothing to do with this.

Stick with the 900N force, although in reality i think you'd find the conditions way, WAY more complex and delicate. Some sort of sensors would help :blink:

Kilograms are not a measure of force guys. All you've calculated is the mass you'd have to apply a force of 927N to in order to accelerate it at 9.8m/s/s in ideal conditions, which has nothing to do with this.

Stick with the 900N force, although in reality i think you'd find the conditions way, WAY more complex and delicate. Some sort of sensors would help :(

Hmmm, seeing as we are all living on the same planet, fro arguements sake Kg is an effective measurement, as he was simply trying to determine a relative amount in perspective.

-20 points for doing math on NY eve :devil::D

Edit: I should prolly post something worthwhile.

Those BOV's have been used on cars running more boost then that.

The reversion and boost spike your seeing is clearly due to your BOV not opening properly. Check the vacuum feed your using (between TB and motor yes?) Check the BOV on the bench with a vacuum pump maybe?

The trick for easy 100% workability would be to use a recirc BOV, not an atmo one... but you don't wanna hear that :(

Your calcs could be correct, but the way the comp wheel is shaped means pulses can go backwards through it much easier (iv heard) and air ain't that viscous

my 2 cents

:worship: It was still afternoon here in the UK, so the brain was (kinda) functioning :) I'm not feeling particularly clever today however...

It appears the best route for me to take is get all the bits back for a recirc. Can this be done, even if my engine has been tuned for no recirc?

Oh, and happy new year everyone!

Steve

I don't see why you've set the plumbing up that way. With a decent intercooler you shouldn't be seeing massive pressure drops anyway.

As for the massive spike, a blow off valve is basically a piston or valve with a spring on it, and a vacuum/pressure line running to it. While the throttle body is open, the idea is that the pressure inside your inlet piping is equal to what's held inside the chamber in the blow off valve. What I'd make sure is that the vacuum line going to the blow-off valve is coming from somewhere post-throttle body.

2. 1.9 Bar being measured at the turbo. Surely this is bad?! For the guys that do not run a BOV, when the throttle body is closed, this equates to (I assume that a closed throttle has an area of 25mm / 0.025m (radius) squared times pi = 0.001963m2):

Pressure = Force x Area

1.9 x .98 (to get atmospheres) = Force x 0.001963

1.82 / 0.001963 = 927 N

Force = Mass x Acceleration

927 = Mass x 9.8m/s/s (gravity)

Therefore Mass = approx 100Kg?!

i don't know how you came up with this, but it would have nothing to do with the air-flow dynamics inside the engine

The prob is the boost gauge and PFC boost gauge cannot be taken from the turbo compressor outlet, there is no vacuum in the turbo, and also there is massive pressure fluctuations. If you hook up a mechanical boost gauge, you'll see the needle dance around like crazy, and even worse when you back off, this is where your "spike" is coming from, doesnt mean the engine is acctually seeing 1.9 bar.

Boost gauge needs to be taken from manifold, and EBC needs to be taken from turbo outlet.

The prob is the boost gauge and PFC boost gauge cannot be taken from the turbo compressor outlet, there is no vacuum in the turbo, and also there is massive pressure fluctuations. If you hook up a mechanical boost gauge, you'll see the needle dance around like crazy, and even worse when you back off, this is where your "spike" is coming from, doesnt mean the engine is acctually seeing 1.9 bar.

Boost gauge needs to be taken from manifold, and EBC needs to be taken from turbo outlet.

Thats what he is saying, the pressure spike inside the IC piping on gearchange is 1.9bar, hence the pressure on the closed throttle plate.

I don't see why you've set the plumbing up that way. With a decent intercooler you shouldn't be seeing massive pressure drops anyway.

As for the massive spike, a blow off valve is basically a piston or valve with a spring on it, and a vacuum/pressure line running to it. While the throttle body is open, the idea is that the pressure inside your inlet piping is equal to what's held inside the chamber in the blow off valve. What I'd make sure is that the vacuum line going to the blow-off valve is coming from somewhere post-throttle body.

I'm not getting a pressure drop, it's the fact I'm getting spiking of .8 bar - that's the problem! I can only put this down to a faulty HKS BOV (I've disassembled for inspection, and everything's in order as far as I can see)

What I question with the HKS BOV is, if you have a look at the way the SSQV works, boost is always in the chamber of the BOV pushing the seat against the seal - it helps keep the valve shut (in theory you could block the vacuum line, and the piston will seal against the seat based on pre throttle body boost). Most BOV's (non-HKS!) I'm aware of use spring tension and boost found on the vacuum line to remain fully closed. When there is vacuum at the manifold, both manifold vacuum AND boost in the pre manifold piping are used to push the valve out / compress the spring, and vent the excess boost. What I don't understand with the HKS is, the vacuum release has to work against spring tension AND residual boost pressure to open! >_<

Well, to answer my own question (under "Product Detail") http://www.racinglab.com/mit3019turhk.html still not sure if I understand fully though...

Also (for Simon-R32), the way the PFC boost controller works is, it comes with a MAP sensor that plugs into the PFC and uses the existing two wires to the stock boost control solenoid. Because the PFC uses this MAP sensor to display boost on the Commander and control boost, the Commander will never display vacuum (due to my MAP sensor being plumbed into turbo piping rather than post throttle body). Is this OK? Does the PFC need to know if there is vacuum? Before I had the work done, tuned etc., I had plumbed the MAP sensor into post throttle body...

Thanks for all your input...

Steve

Edited by skybus

yeah your map sensor needs to be on manifold, then it will read vac and correct boost pressure.

im fairly certain your "spiking" issues doesnt exist either, its just air fluctuations from the turbo causing the gauge to go spastic.

i used to have an AVCR which uses the very same map sensor and solenoid as the PFC kit, and i had it hooked up to manifold and then to turbo outlet, and with stock turbo it said it was spiking to 1.5 bar... which is simply;y not true, the figures were fluctuating like crazy, i was only running 10 psi haha

I wouldnt be surprised at all idf the stock turbo without bov makes 1.5 bar on liftoff/gearchange. The turbo can be flowing 100's cubic feet per minute, at a pressure ratio of 1.7, then the throttle is shut, and the 100's CFM has nowhere to go, the piping/intercooler act like a big pneumatic spring, with the pressure building right up, then the pressure waves bounce back off the throttle body and out through the turbo, then the process repeats itself, hence fully sic flutter

Kilograms are a measure of mass, nothing to do with different planets.

I thought Kilograms were a measure of weight, and Newtons are a measure of mass. Its been a long time though.

I hate the SSQ BOV's; i found them to be more about noise than anything else. Have a look at the opening and you can see that its not significantly bigger than a stock item; thats why theyre so loud, so they cant really be efficient at venting air between the throttle and turbo at 1.9 bar. I really like the Tial 50mm BOV's.

Shaun.

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now


  • Similar Content

  • Latest Posts

    • I did end up getting it sorted, as GTSBoy said, there was a corroded connection and wire that needed to be replaced. I ended up taking out the light assembly, giving everything a good clean and re-soldered the old joints, and it came out good.
    • Wow, thanks for your help guys 🙏. I really appreciate it. Thanks @Rezz, if i fail finding any new or used, full or partial set of original Stage carpets i will come back to you for sure 😉 Explenation is right there, i just missed it 🤦‍♂️. Thanks for pointing out. @soviet_merlin in the meantime, I received a reply from nengun, and i quote: "Thanks for your message and interest in Nengun. KG4900 is for the full set of floor mats, while KG4911 is only the Driver's Floor Mat. FR, RH means Front Right Hand Side. All the Full Set options are now discontinued. However, the Driver's Floor Mat options are still available according to the latest information available to us. We do not know what the differences would be, but if you only want the one mat, we can certainly see what we can find out for you". Interesting. It seems they still have some "new old stock" that Duncan mentioned 🤔. I wonder if they can provide any photos......And i also just realized that amayama have G4900 sets. I'm tempted too. 
    • Any update on this one? did you manage to get it fixed?    i'm having the same issue with my r34 and i believe its to do with the smart entry (keyless) control module but cant be sure without forking out to get a replacement  
    • So this being my first contribution to the SAU forums, I'd like to present and show how I had to solve probably one of the most annoying fixes on any car I've owned: replacing a speedometer (or "speedo") sensor on my newly acquired Series 1 Stagea 260RS Autech Version. I'm simply documenting how I went about to fix this issue, and as I understand it is relatively rare to happen to this generation of cars, it is a gigantic PITA so I hope this helps serve as reference to anyone else who may encounter this issue. NOTE: Although I say this is meant for the 260RS, because the gearbox/drivetrain is shared with the R33 GTR with the 5-speed manual, the application should be exactly the same. Background So after driving my new-to-me Stagea for about 1500km, one night while driving home the speedometer and odometer suddenly stopped working. No clunking noise, no indication something was broken, the speedometer would just stop reading anything and the odometer stopped going up. This is a huge worry for me, because my car is relatively low mileage (only 45k km when purchased) so although I plan to own the car for a long time, a mismatched odometer reading would be hugely detrimental to resale should the day come to sell the car. Thankfully this only occurred a mile or two from home so it wasn't extremely significant. Also, the OCD part of me would be extremely irked if the numbers that showed on my dash doesn't match the actual ageing of the car. Diagnosing I had been in communication with the well renown GTR shop in the USA, U.P.garage up near University Point in Washington state. After some back and forth they said it could be one of two things: 1) The speedometer sensor that goes into the transfer case is broken 2) The actual cluster has a component that went kaput. They said this is common in older Nissan gauge clusters and that would indicate a rebuild is necessary. As I tried to figure out if it was problem #1, I resolved problem #2 by sending my cluster over to Relentless Motorsports in Dallas, TX, whom is local to me and does cluster and ECU rebuilds. He is a one man operation who meticulously replaces every chip, resistor, capacitor, and electronic component on the PCB's on a wide variety of classic and modern cars. His specialty is Lexus and Toyota, but he came highly recommended by Erik of U.P.garage since he does the rebuilds for them on GTR clusters.  For those that don't know, on R32 and R33 GTR gearboxes, the speedometer sensor is mounted in the transfer case and is purely an analog mini "generator" (opposite of an alternator essentially). Based on the speed the sensor spins it generates an AC sine wave voltage up to 5V, and sends that via two wires up to the cluster which then interprets it via the speedometer dial. The signal does NOT go to the ECU first, the wiring goes to the cluster first then the ECU after (or so I'm told).  Problems/Roadblocks I first removed the part from the car on the underside of the transfer case (drain your transfer case fluid/ATF first, guess who found out that the hard way?), and noted the transfer case fluid was EXTREMELY black, most likely never changed on my car. When attempting to turn the gears it felt extremely gritty, as if something was binding the shaft from rotating properly. I got absolutely no voltage reading out of the sensor no matter how fast I turned the shaft. After having to reflow the solder on my AFM sensors based on another SAU guide here, I attempted to disassemble the silicone seal on the back of the sensor to see what happened inside the sensor; turns out, it basically disintegrated itself. Wonderful. Not only had the electrical components destroyed themselves, the magnetic portion on what I thought was on the shaft also chipped and was broken. Solution So solution: find a spare part right? Wrong. Nissan has long discontinued the proper sensor part number 32702-21U19, and it is no longer obtainable either through Nissan NSA or Nissan Japan. I was SOL without proper speed or mileage readings unless I figured out a way to replace this sensor. After tons of Googling and searching on SAU, I found that there IS however a sensor that looks almost exactly like the R33/260RS one: a sensor meant for the R33/R34 GTT and GTS-T with the 5 speed manual. The part number was 25010-21U00, and the body, plug, and shaft all looked exactly the same. The gear was different at the end, but knowing the sensor's gear is held on with a circlip, I figured I could just order the part and swap the gears. Cue me ordering a new part from JustJap down in Kirrawee, NSW, then waiting almost 3 weeks for shipping and customs clearing. The part finally arrives and what did I find? The freaking shaft lengths don't match. $&%* I discussed with Erik how to proceed, and figuring that I basically destroyed the sensor trying to get the shaft out of the damaged sensor from my car. we deemed it too dangerous to try and attempt to swap shafts to the correct length. I had to find a local CNC machinist to help me cut and notch down the shaft. After tons of frantic calling on a Friday afternoon, I managed to get hold of someone and he said he'd be able to do it over half a week. I sent him photos and had him take measurements to match not only the correct length and notch fitment, but also a groove to machine out to hold the retentive circlip. And the end result? *chef's kiss* Perfect. Since I didn't have pliers with me when I picked up the items, I tested the old gear and circlip on. Perfect fit. After that it was simply swapping out the plug bracket to the new sensor, mount it on the transfer case, refill with ATF/Nissan Matic Fluid D, then test out function. Thankfully with the rebuilt cluster and the new sensor, both the speedometer and odometer and now working properly!   And there you have it. About 5-6 weeks of headaches wrapped up in a 15 minute photo essay. As I was told it is rare for sensors of this generation to die so dramatically, but you never know what could go wrong with a 25+ year old car. I HOPE that no one else has to go through this problem like I did, so with my take on a solution I hope it helps others who may encounter this issue in the future. For the TL;DR: 1) Sensor breaks. 2) Find a replacement GTT/GTS-T sensor. 3) Find a CNC machinist to have you cut it down to proper specs. 4) Reinstall then pray to the JDM gods.   Hope this guide/story helps anyone else encountering this problem!
    • So this being my first contribution to the SAU forums, I'd like to present and show how I had to solve probably one of the most annoying fixes on any car I've owned: replacing a speedometer (or "speedo") sensor on my newly acquired Series 1 Stagea 260RS Autech Version. I'm simply documenting how I went about to fix this issue, and as I understand it is relatively rare to happen to this generation of cars, it is a gigantic PITA so I hope this helps serve as reference to anyone else who may encounter this issue. NOTE: Although I say this is meant for the 260RS, because the gearbox/drivetrain is shared with the R33 GTR with the 5-speed manual, the application should be exactly the same. Background So after driving my new-to-me Stagea for about 1500km, one night while driving home the speedometer and odometer suddenly stopped working. No clunking noise, no indication something was broken, the speedometer would just stop reading anything and the odometer stopped going up. This is a huge worry for me, because my car is relatively low mileage (only 45k km when purchased) so although I plan to own the car for a long time, a mismatched odometer reading would be hugely detrimental to resale should the day come to sell the car. Thankfully this only occurred a mile or two from home so it wasn't extremely significant. Also, the OCD part of me would be extremely irked if the numbers that showed on my dash doesn't match the actual ageing of the car. Diagnosing I had been in communication with the well renown GTR shop in the USA, U.P.garage up near University Point in Washington state. After some back and forth they said it could be one of two things: 1) The speedometer sensor that goes into the transfer case is broken 2) The actual cluster has a component that went kaput. They said this is common in older Nissan gauge clusters and that would indicate a rebuild is necessary. As I tried to figure out if it was problem #1, I resolved problem #2 by sending my cluster over to Relentless Motorsports in Dallas, TX, whom is local to me and does cluster and ECU rebuilds. He is a one man operation who meticulously replaces every chip, resistor, capacitor, and electronic component on the PCB's on a wide variety of classic and modern cars. His specialty is Lexus and Toyota, but he came highly recommended by Erik of U.P.garage since he does the rebuilds for them on GTR clusters.  For those that don't know, on R32 and R33 GTR gearboxes, the speedometer sensor is mounted in the transfer case and is purely an analog mini "generator" (opposite of an alternator essentially). Based on the speed the sensor spins it generates an AC sine wave voltage up to 5V, and sends that via two wires up to the cluster which then interprets it via the speedometer dial. The signal does NOT go to the ECU first, the wiring goes to the cluster first then the ECU after (or so I'm told).  Problems/Roadblocks I first removed the part from the car on the underside of the transfer case (drain your transfer case fluid/ATF first, guess who found out that the hard way?), and noted the transfer case fluid was EXTREMELY black, most likely never changed on my car. When attempting to turn the gears it felt extremely gritty, as if shttps://imgur.com/6TQCG3xomething was binding the shaft from rotating properly. After having to reflow the solder on my AFM sensors based on another SAU guide here, I attempted to disassemble the silicone seal on the back of the sensor to see what happened inside the sensor; turns out, it basically disintegrated itself. Wonderful. Not only had the electrical components destroyed themselves, the magnetic portion on what I thought was on the shaft also chipped and was broken. Solution So solution: find a spare part right? Wrong. Nissan has long discontinued the proper sensor part number 32702-21U19, and it is no longer obtainable either through Nissan NSA or Nissan Japan. I was SOL without proper speed or mileage readings unless I figured out a way to replace this sensor. After tons of Googling and searching on SAU, I found that there IS however a sensor that looks almost exactly like the R33/260RS one: a sensor meant for the R33/R34 GTT and GTS-T with the 5 speed manual. The part number was 25010-21U00, and the body, plug, and shaft all looked exactly the same. The gear was different at the end, but knowing the sensor's gear is held on with a circlip, I figured I could just order the part and swap the gears. Cue me ordering a new part from JustJap down in Kirrawee, NSW, then waiting almost 3 weeks for shipping and customs clearing. The part finally arrives and what did I find? The freaking shaft lengths don't match. $&%* I discussed with Erik how to proceed, and figuring that I basically destroyed the sensor trying to get the shaft out of the damaged sensor from my car. we deemed it too dangerous to try and attempt to swap shafts to the correct length. I had to find a local CNC machinist to help me cut and notch down the shaft. After tons of frantic calling on a Friday afternoon, I managed to get hold of someone and he said he'd be able to do it over half a week. I sent him photos and had him take measurements to match not only the correct length and notch fitment, but also a groove to machine out to hold the retentive circlip. And the end result? *chef's kiss* Perfect. Since I didn't have pliers with me when I picked up the items, I tested the old gear and circlip on. Perfect fit. After that it was simply swapping out the plug bracket to the new sensor, mount it on the transfer case, refill with ATF/Nissan Matic Fluid D, then test out function. Thankfully with the rebuilt cluster and the new sensor, both the speedometer and odometer and now working properly!   And there you have it. About 5-6 weeks of headaches wrapped up in a 15 minute photo essay. As I was told it is rare for sensors of this generation to die so dramatically, but you never know what could go wrong with a 25+ year old car. I HOPE that no one else has to go through this problem like I did, so with my take on a solution I hope it helps others who may encounter this issue in the future. For the TL;DR: 1) Sensor breaks. 2) Find a replacement GTT/GTS-T sensor. 3) Find a CNC machinist to have you cut it down to proper specs. 4) Reinstall then pray to the JDM gods.   Hope this guide/story helps anyone else encountering this problem!
×
×
  • Create New...