Jump to content
SAU Community

Recommended Posts

actually one rotation of the crank is 2.6L, two rotations of the crank is a full cycle and 5.2L

in a full combustion cycle of a rotor it actually takes in 3.9L for the 3 sides x 2 rotors that are full combusted, plus 2 extra sides on each rotor 1.3L by 2 remaining in the engine... so why don't we now call it a 6.5L by your reasoning

think about your second comment... your thinking about it the wrong way... capacity is max amount of air a single cylinder or rotor can hold times by the amount there are, not the whole engine at one given time

i would like to know how you justify this, when talking about a 4 stroke engine. because a 4 stroke engine will only take in air every 2 rotations. so it takes air/fuel in (down stroke) compresses the mixture (up stroke) and that is 1 rotation of the crank. then it fires the spark plug and ignites the mixture and pushes the piston down (down stroke) and then pushes the mixture out the exhaust valve on the next up stroke. so unless 4 stroke engines take in extra air on the compression stroke (which they don't) then it is 2.6L per full cycle.

It appears you can't get past your beef with Mazda quoting the 13B as 1308cc.

Why should I? It's blatantty wrong.

I'll repeat once again, in order to accurately compare the Wankel to the 4/2 stroke piston, it has to be done on a displacement per shaft revolution basis.

OK, so over there is a 400 cc trail bike, it has CBR400 on the fuel tank and it says 400 cc on the for sale sign and it has 400 cc in the owners manual. What's the engine's pumping capacity? Obviously the answer is 400 cc's, unless someone is lying. It doesn't matter whether it's a 2 stoke or a 4 stroke, the engine is still 400 cc.

Now, over there is an RX8, it has 1.3 litres on the for sale sign and it has 1.3 litres in the owners manual. What's the engine pumping capacity? Obviously the answer should be 1.3 lites, but someone is lying, it's actually 3.9 litres. It doesn't matter whether it's a 2 stoke or a 4 stroke, the engine is still a 3.9 litre .

I don't see 400 cc 2 stroke trail bikes sold as "equivalent to 800 cc 4 stroke", so why should I tolerate 3.9 litres being sold as 1.3 litres? I don't, because it's simply not true.

Cheers

Gary

The eliptical motion of a rotary isn't as smooth as it sounds. It's not circular, it's eliptical. The motion of a piston is in a way smoother, thanks to a few bearings on key components. The running motion of a human's legs is actually pretty similar to the motion of conrods, and just like the stride we take when our foot touches the ground, the change of direction for a piston is not an immediate one...but largely cushioned/buffered by the motion of the lobe. Also, displacement is very much at hand here...I don't doubt a smaller displacement rotary could produce much faster RPM than a 13B.

Thanks, very informative. Much the same as we can make a smaller piston engine rev faster than a bigger one in that way.

P.S. Can anyone find a good definition of 'displacement' or 'capacity' of an engine, that doesnt in any way mention pistons, so we can settle that particular aspect of the debate once and for all. I have tried but cannot find one. I am quite certain it won't equate to 1.3L though

Thanks, very informative. Much the same as we can make a smaller piston engine rev faster than a bigger one in that way.

Indeed my friend :)

Size is quite relative to speed...bigger components can't move as fast as smaller components. Dentist drills can spin at 70,000rpm if I recall correctly. Some ship engines produce 200rpm at maximum speed :P

P.S. Can anyone find a good definition of 'displacement' or 'capacity' of an engine, that doesnt in any way mention pistons, so we can settle that particular aspect of the debate once and for all. I have tried but cannot find one. I am quite certain it won't equate to 1.3L though

There's no point. Gary has already said he doesn't do comparisons in that fashion (using an equaliser). This will never end.

Best to agree to disagree. Let's just call the 13B a 80ci engine (and ignore the fact it uses that air like a 2 stroke) and move on.

There's no point. Gary has already said he doesn't do comparisons in that fashion (using an equaliser). This will never end.

Best to agree to disagree. Let's just call the 13B a 80ci engine and move on.

displacement/capacity however is a characteristic of an engine that should be independant of how the engine works. I'm willing to accept gary's defintion, and call it a 3.9L, on the caveat that you multiply it by ~2/3 to compare with a 4 stroke, in the same way you multiple a 2 stroke by ~2 to compare it to a 4 stroke.

But, is that a correct definition of displacement? I think it is, but am not certain.

whats the full displacement of a 20b then ;)

Its a full time job keeping up with this thread

Im still thinking Gary is correctomundo - and its no secret the rotors have big displacement, the turbos they spin clearly show that

Edited by Granthem

i have a CR500 two stroke engine here which the manufacture claims 491cc...it bore and stroke is 89mmx79mm...its exhaust port closes at around 47mm from TDC....i feel robbed of 32mm of combusting stroke and 198.61cc's:(

Edited by ylwgtr2

good point about the turbo sizes, all that air has to fit in somewhere! (even with the rotary's lower inherent compression ratio).

After reading this thread, I can't look at an RX-7 the same way because I'm constantly thinking theres a 3.9 litre motor in there, and my boner goes down just that little bit more ;)

I'm a simple guy, I measure an engine's capacity by how much it pumps. Actually I can't be that simple, because every engine manufacturer in the world agrees with me and measure their engines' capacities by how much they pump. Except one, why should we allow an exception for one engine manufacturer? I don't think we should.

Cheers

Gary

I dissagree, it's not the how much it pumps but the maximum volume able to be held...

"a. The ability to receive, hold, or absorb.

b. Abbr. c. A measure of this ability; volume."

displacement/capacity however is a characteristic of an engine that should be independant of how the engine works. I'm willing to accept gary's defintion, and call it a 3.9L, on the caveat that you multiply it by ~2/3 to compare with a 4 stroke, in the same way you multiple a 2 stroke by ~2 to compare it to a 4 stroke.

But, is that a correct definition of displacement? I think it is, but am not certain.

That is indeed the fair displacement comparison ;)

Most of the world has recognised this and in motorsport categories where rotaries are allowed to compete...bar some other variables that influence it...the displacement of a rotary is approximately doubled to put it into fair displacement categories with 4 stroke engines.

i have a CR500 two stroke engine here which the manufacture claims 491cc...it bore and stroke is 89mmx79mm...its exhaust port closes at around 47mm from TDC....i feel robbed of 32mm of combusting stroke and 198.61cc's:(

LOL :)

Perhaps the most important thing to remember in all this displacement arguing...is you can call a 13B X displacement if you want...its actual displacement is so irrelevant in the real world it's not funny. The end power/torque outputs and the fuel economy of the engine are what its customers actually give a shit about. Who buys an RX7 and argues with the salesmen about the displacement of the engine? You want to know how fast it goes and how much it's going to cost you. I fail to see how Mazda can successfully LIE about 1.3 litres to make the engine seem attractive, when the thing has the fuel economy of a V6/V8? What's the point of lying about its displacement if fuel economy and power output are going to shut you down? There's no advantage to listing it as 1.3 over 2.6 or 3.9. The moment someone asks Mazda how many litres per 100km the thing uses, the lie is all over? Rotaries are their own engines, the displacement is whatever the inventor wants to attach to it. For all other areas where displacement IS a relevant factor, e.g. motorsport...we have formulas for working out the displacement advantage/disadvantage. End of story!

And that's all we need to know...the rest can be agreed to disagree.

i would like to know how you justify this, when talking about a 4 stroke engine. because a 4 stroke engine will only take in air every 2 rotations. so it takes air/fuel in (down stroke) compresses the mixture (up stroke) and that is 1 rotation of the crank. then it fires the spark plug and ignites the mixture and pushes the piston down (down stroke) and then pushes the mixture out the exhaust valve on the next up stroke. so unless 4 stroke engines take in extra air on the compression stroke (which they don't) then it is 2.6L per full cycle.

capacity is maximum volume not air ingested into the engine...

displacement/capacity however is a characteristic of an engine that should be independant of how the engine works. I'm willing to accept gary's defintion, and call it a 3.9L, on the caveat that you multiply it by ~2/3 to compare with a 4 stroke, in the same way you multiple a 2 stroke by ~2 to compare it to a 4 stroke.

But, is that a correct definition of displacement? I think it is, but am not certain.

http://www.answers.com/topic/engine-displacement

The above is a 720 degree, 4 stroke engine.

The rotary is the exception to the rule. A 13B is a 3-revolution (1080 degree) 3.9 litre engine. The displacement figure is where I agree with Gary. He does not standardise it by revolution, this then makes comparisons impossible (and incorrectly refers to it as a two stroke which is impossible). Thankfully the motorsport bodies out there understand the idea of relatives.

Standardise the 13B to a (4 stroke) 720 degree (2 revolution) rotation and you end up with 2.616L - where each rotor displaces .654 litres of air.

2 stroke? 1 revolution? It's a 1.3L.

capacity is maximum volume not air ingested into the engine...

well if you are talking capacity as total volume then no piston engine is what it is quoted and even when you said that a 2.6L engine is a 5.2L after a full cycle you are incorrect. it would be bigger because when the piston is at TDC there is still a gap between the piston and the head (combustion chamber).

however the motoring world usually talks about engine displacement (although they may use the word capacity) as the displacement is the amount of air able to be displaced by the piston (so the volume), and since a 4 stroke engine only actually only displaces this air every second stroke a 2.6L engine is just a 2.6L engine. and this is the exact reason why when 2 stroke motorbikes race against 4 stroke bikes they are usually put in with bikes of twice the capacity as they both displace the same amount of air.

however the motoring world usually talks about engine displacement (although they may use the word capacity) as the displacement is the amount of air able to be displaced by the piston (so the volume), and since a 4 stroke engine only actually only displaces this air every second stroke a 2.6L engine is just a 2.6L engine. and this is the exact reason why when 2 stroke motorbikes race against 4 stroke bikes they are usually put in with bikes of twice the capacity as they both displace the same amount of air.

This bloke understands it. ;) 720 degrees for a 4 stroke TDC to BDC.

i should add that they will measure the displacement with 1 rotation of the crank (well half actually since they only need to measure 1 cylinder), but since it it doesn't expell any gas until the last half of the second rotation they don't take into account the second stroke, and why should they? it would be like me selling you 1L of oil but charging you for 2 because i had tipped a second litre of oil over the bottle to make it 2L

well if you are talking capacity as total volume then no piston engine is what it is quoted and even when you said that a 2.6L engine is a 5.2L after a full cycle you are incorrect. it would be bigger because when the piston is at TDC there is still a gap between the piston and the head (combustion chamber).

however the motoring world usually talks about engine displacement (although they may use the word capacity) as the displacement is the amount of air able to be displaced by the piston (so the volume), and since a 4 stroke engine only actually only displaces this air every second stroke a 2.6L engine is just a 2.6L engine. and this is the exact reason why when 2 stroke motorbikes race against 4 stroke bikes they are usually put in with bikes of twice the capacity as they both displace the same amount of air.

MAXIMUM VOLUME, not total volume... come on already

turn the cylinder to the point where you can get the most volume, record that volume and then times by the number of cylinders

however the motoring world usually talks about engine displacement (although they may use the word capacity) as the displacement is the amount of air able to be displaced by the piston (so the volume), and since a 4 stroke engine only actually only displaces this air every second stroke a 2.6L engine is just a 2.6L engine. and this is the exact reason why when 2 stroke motorbikes race against 4 stroke bikes they are usually put in with bikes of twice the capacity as they both displace the same amount of air.

well why is that the two strokes problem to have to suffer a capacity disability?(or are we basing things on 720degrees now)And wheres my extra capacity as ive lost some from having an exhaust port!!!!!

Edited by ylwgtr2

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now



  • Similar Content

  • Latest Posts

    • I had 3 counts over the last couple of weeks once where i got stranded at a jdm paint yard booking in some work. 2nd time was moving the car into the drive way for the inspection and the 3rd was during the inspection for the co2 leak test. Fix: 1st, car off for a hour and half disconnected battery 10mins 4th try car started 2nd, 5th try started 3rd, countless time starting disconnected battery dude was under the hood listening to the starting sequence fuel pump ect.   
    • This. As for your options - I suggest remote mounting the Nissan sensor further away on a length of steel tube. That tube to have a loop in it to handle vibration, etc etc. You will need to either put a tee and a bleed fitting near the sensor, or crack the fitting at the sensor to bleed it full of oil when you first set it up, otherwise you won't get the line filled. But this is a small problem. Just needs enough access to get it done.
    • The time is always correct. Only the date is wrong. It currently thinks it is January 19. Tomorrow it will say it is January 20. The date and time are ( should be ! ) retrieved from the GPS navigation system.
    • Buy yourself a set of easy outs. See if they will get a good bite in and unthread it.   Very very lucky the whole sender didn't let go while on the track and cost you a motor!
    • Well GTSBoy, prepare yourself further. I did a track day with 1/2 a day prep on Friday, inpromptu. The good news is that I got home, and didn't drive the car into a wall. Everything seemed mostly okay. The car was even a little faster than it was last time. I also got to get some good datalog data too. I also noticed a tiny bit of knock which was (luckily?) recorded. All I know is the knock sensors got recalibrated.... and are notorious for false knock. So I don't know if they are too sensitive, not sensitive enough... or some other third option. But I reduced timing anyway. It wasn't every pull through the session either. Think along the lines of -1 degree of timing for say, three instances while at the top of 4th in a 20 minute all-hot-lap session. Unfortunately at the end of session 2... I noticed a little oil. I borrowed some jack stands and a jack and took a look under there, but as is often the case, messing around with it kinda half cleaned it up, it was not conclusive where it was coming from. I decided to give it another go and see how it was. The amount of oil was maybe one/two small drops. I did another 20 minute session and car went well, and I was just starting to get into it and not be terrified of driving on track. I pulled over and checked in the pits and saw this: This is where I called it, packed up and went home as I live ~20 min from the track with a VERY VERY CLOSE EYE on Oil Pressure on the way home. The volume wasn't much but you never know. I checked it today when I had my own space/tools/time to find out what was going on, wanted to clean it up, run the car and see if any of the fittings from around the oil filter were causing it. I have like.. 5 fittings there, so I suspected one was (hopefully?) the culprit. It became immediately apparent as soon as I looked around more closely. 795d266d-a034-4b8c-89c9-d83860f5d00a.mp4       This is the R34 GTT oil sender connected via an adapter to an oil cooler block I have installed which runs AN lines to my cooler (and back). There's also an oil temp sensor on top.  Just after that video, I attempted to unthread the sensor to see if it's loose/worn and it disintegrated in my hand. So yes. I am glad I noticed that oil because it would appear that complete and utter catastrophic engine failure was about 1 second of engine runtime away. I did try to drill the fitting out, and only succeeded in drilling the middle hole much larger and now there's a... smooth hole in there with what looks like a damn sleeve still incredibly tight in there. Not really sure how to proceed from here. My options: 1) Find someone who can remove the stuck fitting, and use a steel adapter so it won't fatigue? (Female BSPT for the R34 sender to 1/8NPT male - HARD to find). IF it isn't possible to remove - Buy a new block ($320) and have someone tap a new 1/8NPT in the top of it ($????) and hope the steel adapter works better. 2) Buy a new block and give up on the OEM pressure sender for the dash entirely, and use the supplied 1/8 NPT for the oil temp sender. Having the oil pressure read 0 in the dash with the warning lamp will give me a lot of anxiety driving around. I do have the actual GM sensor/sender working, but it needs OBD2 as a gauge. If I'm datalogging I don't actually have a readout of what the gauge is currently displaying. 3) Other? Find a new location for the OEM sender? Though I don't know of anywhere that will work. I also don't know if a steel adapter is actually functionally smart here. It's clearly leveraged itself through vibration of the motor and snapped in half. This doesn't seem like a setup a smart person would replicate given the weight of the OEM sender. Still pretty happy being lucky for once and seeing this at the absolute last moment before bye bye motor in a big way, even if an adapter is apparently 6 weeks+ delivery and I have no way to free the current stuck/potentially destroyed threads in the current oil block.
×
×
  • Create New...