Jump to content
SAU Community

Recommended Posts

  • Replies 62.7k
  • Created
  • Last Reply

Top Posters In This Topic

  • chaos

    7164

  • Ska

    5791

  • BelGarion

    3645

  • Nexus9

    3590

Top Posters In This Topic

ergo

This line of argument brings us to an interesting notion: that of the interaction boundary. Let us assume an observer and a system to be observed-any observer and any system. Between them, imagine a boundary, and call it an interaction boundary. This boundary is strictly mathematical; it has no necessary physical reality. In order for the observers to learn about the system, they must cause at least one quantum of "information" (energy, momentum, spin, or what-have-you) to pass from themselves through the boundary. The quantum of information is absorbed by the system (or it might be reflected back) and the system is thereby perturbed. Because it has undergone a perturbation, it causes another quantum of information to pass back through the boundary to the observer. The "observation" is the observer's subjective response to receiving this information. In a simple diagram, the situation looks like this:

arrow.GIF

O | S

arrowl.gif

where O and S represent the observer and the system, the vertical line represents the interaction boundary, and the arrows represent the information exchanged in the act of observation.

In this scheme, no observation can be made without first perturbing the system. The observation is never one of the system "at rest," but of the system perturbed. If sigma.GIF represents the state of the system before the perturbation and sigma.GIF ±curved.GIFsigma.GIFrepresents the state immediately after, then the observation approaches the ideal only if

curved.GIFsigma.GIF<< sigma.GIF.

If I is the information selected by the observer to send across the interaction boundary, then it is apparent that curved.GIFsigma.GIF must be a function of I: i.e.,

curved.GIFsigma.GIF= curved.GIFsigma.GIF(I).

Thus, the observation is affected by choices made by the observer, as quantum mechanics seems to teach. In the case of atomic and some molecular phenomena, the inequality

curved.GIFsigma.GIF<<sigma.GIF

does not hold; in fact curved.GIFsigma.GIFarrow.GIFsigma.GIF so that the perturbation is comparable in magnitude to the state itself. Because all information is exchanged in quanta (modern physics does not allow for the "smooth exchange" of arbitrarily small pieces of information), this situation necessarily gives rise to an inescapable uncertainty in such observations. The quantum theory takes this uncertainty into account as the Heisenberg Uncertainty Principle.

Uncertainty is not strictly a law of Nature, but is a result of natural laws that reveal a kind of granularity at certain levels of existence. Observers in modern physics truly become participants in their observation, whatever that observation might be.

ergo

This line of argument brings us to an interesting notion: that of the interaction boundary. Let us assume an observer and a system to be observed-any observer and any system. Between them, imagine a boundary, and call it an interaction boundary. This boundary is strictly mathematical; it has no necessary physical reality. In order for the observers to learn about the system, they must cause at least one quantum of "information" (energy, momentum, spin, or what-have-you) to pass from themselves through the boundary. The quantum of information is absorbed by the system (or it might be reflected back) and the system is thereby perturbed. Because it has undergone a perturbation, it causes another quantum of information to pass back through the boundary to the observer. The "observation" is the observer's subjective response to receiving this information. In a simple diagram, the situation looks like this:

arrow.GIF

O | S

arrowl.gif

where O and S represent the observer and the system, the vertical line represents the interaction boundary, and the arrows represent the information exchanged in the act of observation.

In this scheme, no observation can be made without first perturbing the system. The observation is never one of the system "at rest," but of the system perturbed. If sigma.GIF represents the state of the system before the perturbation and sigma.GIF ±curved.GIFsigma.GIFrepresents the state immediately after, then the observation approaches the ideal only if

curved.GIFsigma.GIF<< sigma.GIF.

If I is the information selected by the observer to send across the interaction boundary, then it is apparent that curved.GIFsigma.GIF must be a function of I: i.e.,

curved.GIFsigma.GIF= curved.GIFsigma.GIF(I).

Thus, the observation is affected by choices made by the observer, as quantum mechanics seems to teach. In the case of atomic and some molecular phenomena, the inequality

curved.GIFsigma.GIF<<sigma.GIF

does not hold; in fact curved.GIFsigma.GIFarrow.GIFsigma.GIF so that the perturbation is comparable in magnitude to the state itself. Because all information is exchanged in quanta (modern physics does not allow for the "smooth exchange" of arbitrarily small pieces of information), this situation necessarily gives rise to an inescapable uncertainty in such observations. The quantum theory takes this uncertainty into account as the Heisenberg Uncertainty Principle.

Uncertainty is not strictly a law of Nature, but is a result of natural laws that reveal a kind of granularity at certain levels of existence. Observers in modern physics truly become participants in their observation, whatever that observation might be.

:)

Chris - THE FARKING TREE MAKES A SOUND BECAUSE I SAID SO! HA! :)
Oh okay..... as long as you say so :rofl:

I guess empirical evidence is no longer an accepted form of scientific validation, as now all things are possible at the mere whim of Cyrus ...... and accordingly so..... raise the speed limits llama :)

Guest
This topic is now closed to further replies.



  • Similar Content

  • Latest Posts

    • There's restrictor pills in the stock boost control hoses. That's how they set the amount that was bled off and hence the "high" boost setting. The usual mod in the day was to remove it and send the "high" boost setting up to about 14 psi.
    • Thanks Duncan, that's the best info I've read. Furthermore after learning about the PCM programming side controlling the factory boost solenoid, the purpose of the solenoid is to "bleed" boost when pin 25 is earthed, thus allowing spring pressure in the wastegate actuator to overcome diaphragm boost pressure, thus closing or reducing the position of the wastegate flap creating more boost as the turbo is able to spin faster. It's pretty cool to see a designated Pill to do exactly this, would have liked to have seen it with a tiny filter over the end for those moments in vacuum.  The constant bleed pill has now been removed completely from the system and solenoid boost control has been restored once again.   Case closed 😂
    • The wideband reading is meaningless if it's not running. Why are you using shitty old sidefeeds on any engine, let alone a Neo? What manifold and fuel rail are you using to achieve that? Beyond that, can't help you with AEM stuff as I've never been their ECU/CAS combo.
    • Manual boost controllers (where a little of the boost was bled off) were quite common back in the day, because they were cheap and easy. Generally they had a manual adjustment screw rather than being fixed like yours. Down side is they always bleed boost, not just when you want them to so an electronic boost controller that uses a solenoid will have less lag.
    • Hello , im new here and i have A31 home build  RB25det neo stock eng / turbo  aem ems 2 blue connector  aem 3.5 map aem cas disk aem wideband connected to ecu  355 lph pump 550 nismo yellow injectors side feed aftermarket regulator  and won’t start with base aem tuner basic tune eventually flipped cas 180 degree so it triggers on correct stroke not in exhaust cycle  Now it won’t start Wideband reads 10 and 11 at lowest fuel setting  and will share calibrations soon for aem tuner i think something is wrong in aem tuner    please if you have any information, am very grateful         
×
×
  • Create New...