Jump to content
SAU Community

Recommended Posts

  • Replies 55
  • Created
  • Last Reply

Top Posters In This Topic

Top Posters In This Topic

Posted Images

Forced induction engines are always going to be easier to get power out of. Pretty simple really, when building an NA motor, the whole aim is to try and get more air into it... The more air you can get in there the more horsepower you will make, it is very hard beyond a certain point to get any more air in at atmospheric pressure. Add pressure and all of a sudden perfect inlet ports etc don't really matter as much. Eg, my 1.6l corolla rally car makes 130kw atw, massive number for an engine like that, and equivalent to 210atw of a 2.6l....

they've had variable vane turbos & common rail injection on turbo diesel patrols & navarras for awhile now

manufacturers invariably go for the cheapest or cost effective option available at the time, makes sense that technology becomes more accessible ie cheaper over time

same reason early r series skylines had ceramic wheel turbos from factory rather than steel (N1 turbos excepted)

it's economics

they can totally make a household lightbulb that could last a lifetime, we haz the technology, but it wouldn't be very profitable for the company manufacturing these lightbulbs

  • 2 weeks later...

ok a few points to make here,

1: if f1 technology was used so much in road cars then we'd be seeing plenty of cars reving to well over 10,000rpm

2: turbo cars aren't that much cheaper to get power out of, people just tend to forget about the expense of getting power out of a turbo engine. the initial gains from a turbo car can be cheap (wind the boost up a bit), but after that the dollars start to climb very quickly. work out the price of a new turbo, ecu, injectors, etc. sure it will gain you more power than a natro, but it has also cost you a lot more.

3: if turbos were more common on cars then skylines would be less desirable. why would people spend 10 to 15k on a skyline when for half the money you could buy a turbo commodore or falcon that would most likely be putting out more power and be faster?

4: there will always be NA cars since they are always cheaper.

5: bigger engines with turbos overcome the lag. xr6 turbo is a perfect example. peak torque starts at 1500rpm, and the pull like a train throughout the rev range.

they've had variable vane turbos & common rail injection on turbo diesel patrols & navarras for awhile now

The variable vane turbo on the ZD30 is a bad example with Nissan's poor electronic control causing over boost.

Unless the operator is watching his instruments, this fragile engine doesn't last long.

Garrett and Holsett are having sticky vane problems in diesel applications, unlike the Cat C-15 which runs a conventional wastegate controlling the series mounted turbos.

Looks complicated but works.

Once they go, Cummins ISX operators are ditching the variable vane turbo in favour of much cheaper and reliable internal wastegate versions.

Clearly a lot more R&D required by turbo manufacturers.

ok a few points to make here,

1: if f1 technology was used so much in road cars then we'd be seeing plenty of cars reving to well over 10,000rpm

2: turbo cars aren't that much cheaper to get power out of, people just tend to forget about the expense of getting power out of a turbo engine. the initial gains from a turbo car can be cheap (wind the boost up a bit), but after that the dollars start to climb very quickly. work out the price of a new turbo, ecu, injectors, etc. sure it will gain you more power than a natro, but it has also cost you a lot more.

3: if turbos were more common on cars then skylines would be less desirable. why would people spend 10 to 15k on a skyline when for half the money you could buy a turbo commodore or falcon that would most likely be putting out more power and be faster?

4: there will always be NA cars since they are always cheaper.

5: bigger engines with turbos overcome the lag. xr6 turbo is a perfect example. peak torque starts at 1500rpm, and the pull like a train throughout the rev range.

1-not exactly. but what it has done is develop technology that enables engines to rev higher, and more reliably.

2- yes and no. But it sounds like you are coming from the perspective of increasing power aftermarket.

Building a car in the manufacturing process to develop 'x' power (x being quite a high figure- lets say in excess of 500-600hp) then building a turbo motor to do it would arguably be cheaper. Again, still something very debatable. But i spose a good point to consider is how many road going manufactured cars in excess of 500hp are turbo'd n how many are NA..

3- true

4- true

5-also true. Cmon, we have been dying for larger cc skylines for ages. Hence RB30/25 :)

Edited by jjman

I wonder what engines will be like in a few decades? I mean a 2.0L mx5 produces the same power as a 4.7L 60s mustang nowadays, there are probably smaller capacity NA engines which do as well, I guess the next step would be in using efficiency to close the torque gap.

(Though the life of petrol engines is not getting any longer, it'll be something else that replaces it. Hopefully something like methanol so that some of the characteristics we love about engines will still be there, rather than just battery or fuel cell powered whirring.)

Anyway, what I was getting at at first was that if engines become more efficient (only a small percentage of the available chemical energy is actually converted into power, ~10%) 500cc engines could be putting out the power of big v8's, but still the more cc's the easier it will be to produce power.

And if manufacturers only cared about maximum speed they would ALL be forced induction.

However, when a manufacturer also cares about throttle response and exhaust note they are hesitant to go turbo. A lot of Lambo's and Ferrari's are sold on sound, not whether they go 380 or 390kph.

I think when you've got 300+ kw/tonne then other things become more important than extra power.

Currently the focus is on direct injection with smaller turbos and high compression (but lower revs). Most of the direct injection Euro engines are making great torque and throttle response but don't rev high so they reduce consumption.

I would love to see a direct injection, medium sized single turbo straight 6 with decent revs in a light-weight chassis (the next Z-car)?

ie. If Nissan remade a sports direct injection straight 6 of say 3.0L capacity.

All alloy with 10:1 compression,

10psi, twin scroll T3 (based around a GT2835 or some such)

Direct injection

Decent intercooler and exhaust with half-decent cams to make peak power at 6500rpm.

realistic figures would be something like:

470Nm from 2500 to 5000rpm

290kw at 6500rpm

Aftermarket would go b-a-n-a-n-a-s.

Alternatively they could go S16 with even lower weight ~1200kg flat, new direct injection 2.0L with decent revs and have:

350Nm & 215Kw.

Now that would be hot cake material.

I like the way you think Simpletool.

sounds like that something that can be gotten wrong tho- hence the multitude of comments about the MX5 turbo a few years back that "it feels like the turbo isnt hooked up"

its a shame when they go too soft... Iv driven one myself and was thoroughly dissapointed. With a turbo you really want some sort of power curve/top end push to let you know its there. Certainly didnt have that...

I wonder what engines will be like in a few decades? I mean a 2.0L mx5 produces the same power as a 4.7L 60s mustang nowadays, there are probably smaller capacity NA engines which do as well, I guess the next step would be in using efficiency to close the torque gap.

(Though the life of petrol engines is not getting any longer, it'll be something else that replaces it. Hopefully something like methanol so that some of the characteristics we love about engines will still be there, rather than just battery or fuel cell powered whirring.)

Anyway, what I was getting at at first was that if engines become more efficient (only a small percentage of the available chemical energy is actually converted into power, ~10%) 500cc engines could be putting out the power of big v8's, but still the more cc's the easier it will be to produce power.

i'd guess that they will be drastically different and not really comparable (talking decades - plural, so at least 20 years). with focus now being on renewable fuels, etc.

The new toyota Ft86 is supposed to have direct injection on a 2L engine. I could see the aftermarket having some fun with that. Of course you'd have to turbo it first, which i imagine could be a right royal pain in the arse.

Edited by sneakey pete

The only problem with direct injection and the aftermarket would be......well think about what it would cost for a set of 6 1000cc injectors for a direct injection motor.

ECU's that could run said direct injection.

Notice the Track oriantated Porsche 911's (GT2 and GT3) still run conventional injectors, so that aftermarket ECU's can run the things.

Sure technology will catch up, but at what price, and with a somewhat limited use atm.

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now



  • Similar Content

  • Latest Posts

    • One thing I can tell you is, do it properly the first time. If you encounter unexpected problems just let the car sit for a week or two if you have to get some other parts or figure stuff out.  I'd have said go and use as many OEM parts as possible but since you want to change the turbo later on a custom kit is probably the better choice. Since I have no experience with RB25 just compare parts diagrams and images before buying a line kit and it should be easy to see if it has everything you need. Amayama has very good parts diagrams and part number lists, that is what I used a bunch to figure out what I might need. And don't forget to plan ahead and possibly renew other stuff that's easy to get to while you're in there doing the turbo lines. Happy wrenching
    • Update 4:   Hi all, good news. Engine is running and all the gaskets and seals seem to be working as intended. No leaks so far, even the JB Weld seems to hold. I flushed out the old coolant a few times and put in fresh coolant, not Nissan stuff, I decided to try the Ravenol Protect FL22, they claim it works for a wide variety of JDM cars and the opinions on it by some people were pretty good. And it has the nice poison green color! And man am I glad I bought a coolant system tester earlier this year, vacuum filling works wonders on this engine. I can definitely recommend this to anyone still doing it the old school way. All you need is compressed air supply. Will have to do a small test drive as soon as I can, I removed the gauge cluster again as the tacho needle was still bouncing around a bit but it was much better than before already.  I also found some cracks on all 4 tires inner and outer sidewalls. Apparently these tires should 't be parked on for extended periods or be kept under 0 degrees during storage, which I did not know. Clearly the previous owner didn't look into those details either, he probably bought them just cause they are cool semi-slicks. I'm just wondering how tf I am supposed to reach 30-80 degree tire temperatures on the public road consistenly, these tires were never going to work for my use case. I'll probably order Continental SportContact7 ones as these are the best allround summer tire available right now and I don't think I'll need anything crazier for now. Do let me know if you have experience with various tires and which ones you recommend.
    • You have no idea how many goddamn boxes I received these past three months haha Most have been put to use by now though, luckily
    • Not going to pretend I didn't do a bit of junky work this time around, but mostly due to the fact that some things I am not willing to spend days fixing right now, like wiring. I try to do most things properly the first time around.
    • Regardless of neglect or incompetence, fixing either is tedious and annoying. Most of the neglect on my car is definitely rust. I hope I can at least pass inspections later on and they won't fail the car due to slightly corroded hardlines. I was generous with rust converter and wax and it looks ok, most lines in the rear are hard to see properly anyways.  Definitely will test them though to make sure they don't rupture under pressure, in that case the car isn't going anywhere this year.
×
×
  • Create New...