Jump to content
SAU Community

Recommended Posts

Forget high compression if you want big boost... waste of time. The small amount of hp you will make lower off boost will not offset the amount you could make by winding the boost up further and not having any issues.

Lower compression and no quench for big power and high boost.

id rather higher CR with lower boost.

of course you need a good tuner & E85 to make it work

it is a street car so this thing would be so much better to drive with higher CR...

Edited by BMYHOE

I bought a set of Kelford 280 10.55mm lift cams, They do them as an off the shelf item. My turbo isn't anywhere are big as yours (B/W EFR 8374 .91a/r) and make 460kw at the hubs, full boost (20psi) at 3400rpm, it is a RB30 however.

Edited by Sub Boy32

Forget high compression if you want big boost... waste of time. The small amount of hp you will make lower off boost will not offset the amount you could make by winding the boost up further and not having any issues.

Lower compression and no quench for big power and high boost.

Well that's definately a different way to look at things.... When was the last time a high performance car manufacturer reduced compression ratio or quench in a newer model?

Higher compression will make the engine more efficient everywhere. Now couple that with a highly knock resistant fuel and you will have a good engine. You need to look at your compressor map and see where the turbo needs to run and then choose the compression ratio based on the fuel and boost you need to run.

I bought a set of Kelford 280 10.55mm lift cams, They do them as an off the shelf item. My turbo isn't anywhere are big as yours (B/W EFR 8374 .91a/r) and make 460kw at the hubs, full boost (20psi) at 3400rpm, it is a RB30 however.

Why only 20psi mate?

Is that in E85?

How have you set your cam gears up? Response/power

I only ask as I'll be having me 83/75 tuned very soon :)

Well that's definately a different way to look at things.... When was the last time a high performance car manufacturer reduced compression ratio or quench in a newer model?

Higher compression will make the engine more efficient everywhere. Now couple that with a highly knock resistant fuel and you will have a good engine. You need to look at your compressor map and see where the turbo needs to run and then choose the compression ratio based on the fuel and boost you need to run.

You answered your own question... OEM's are tight quench, high compression engines for a whole bunch of reasons not directly related to big horsepower. Efficiency across the whole rev range, emissions, etc

In terms of making big horsepower in a boosted application it is far from different. No quench and lower compression (lower is very subjective) and obviously high boost pressure is favoured.

I can see the appeal that the OEM's go for and also what others do on here with their builds; but for 500kW throw that approach in the bin.

I totally agree Michael, there comes a point where you have no choice but to lower compression, high cylinder pressure will kill your engine very quickly.

After modeling a few high comp builds with my tuner just last night, I can say that a 500kw engine must have low compression to survive, no matter what fuel or internals you run. I wish it weren't the case but cylinder pressure rises exponentially with power.

I wish it weren't the case but cylinder pressure rises exponentially with power.

What were you using to "model" different engine setups? My understanding is (no doubt could be wrong... but I'd like to be convinced on that fact) that it actually doesn't increase exponentially at all. I would have thought it would take no time to blow a motor up when increasing power if it did. There are ways of gaining torque without (or hardly) increasing peak cylinder pressure.

You answered your own question... OEM's are tight quench, high compression engines for a whole bunch of reasons not directly related to big horsepower. Efficiency across the whole rev range, emissions, etc

In terms of making big horsepower in a boosted application it is far from different. No quench and lower compression (lower is very subjective) and obviously high boost pressure is favoured.

I can see the appeal that the OEM's go for and also what others do on here with their builds; but for 500kW throw that approach in the bin.

What would car manufactures know about building engines.....

Every new model needs to make more hp, less emissions and better fuel economy. Changing to a higher compression ratio is not an easy change considering the extra thermal loading on turbo chargers and catalytic converts coupled with the potential for higher NOx levels and less resistance to knock. They usually run high quench zones to promote central flame propegation and the fact that detonation usually propagates at the outer edges of the chamber. Look at the 335ci engine or L3T mazda engine or VW golf they are all running high compression ratios couple with Direct injection.

Now when you have a higher octane fuel - in order to achieve the full affects of a highly knock resistant fuel is to increase the compression ratio. I dont see the point of running "big boost" when all your doing is running the turbocharger outside of its effciency range.

And average cylinder pressures dont increase expotentially with power... You would probly find that a well setup 400kw car would have similar cylinder pressures to a 500kw car, its just the 500kw car has higher cylinder pressure at a higher rpm.

What would car manufactures know about building engines.....

Every new model needs to make more hp, less emissions and better fuel economy. Changing to a higher compression ratio is not an easy change considering the extra thermal loading on turbo chargers and catalytic converts coupled with the potential for higher NOx levels and less resistance to knock. They usually run high quench zones to promote central flame propegation and the fact that detonation usually propagates at the outer edges of the chamber. Look at the 335ci engine or L3T mazda engine or VW golf they are all running high compression ratios couple with Direct injection.

Now when you have a higher octane fuel - in order to achieve the full affects of a highly knock resistant fuel is to increase the compression ratio. I dont see the point of running "big boost" when all your doing is running the turbocharger outside of its effciency range.

And average cylinder pressures dont increase expotentially with power... You would probly find that a well setup 400kw car would have similar cylinder pressures to a 500kw car, its just the 500kw car has higher cylinder pressure at a higher rpm.

But they are not building race engines... they are producing OEM products with strict guidelines, regulations and laws.

If you choose your turbocharger poorly then yes you might be outside its efficiency, not if you have a compressor map and can design the package effectively.

What were you using to "model" different engine setups? My understanding is (no doubt could be wrong... but I'd like to be convinced on that fact) that it actually doesn't increase exponentially at all. I would have thought it would take no time to blow a motor up when increasing power if it did. There are ways of gaining torque without (or hardly) increasing peak cylinder pressure.

It was an engine design engineering application, not sure of the name but it calculates accurately if modelled correctly. We were hoping to run 11:1 on a 2.5L VQ, at any more than 15psi the cylinder pressure would spike. Power was made more easily with the compression at 8.8:1 with lower cylinder pressures. As we are designing it for track we decided lower compression was a must and turbo response less critical. Street applications you could argue the opposite I guess.

Increasing the engine capacity was the easiest way to increase torque and power output without affecting cylinder pressure, but we are trying to keep it under 2.5L, and looking for 700hp+.

Rob 82 is all over it. Have a look at your Dyno graphs how many of these graphs maintain targeted torque values. Lets say the engine can withstand 850 nm then how many of these tuned engine generate that targeted torque then maintain it to the rev limiter. Who says these high comp engines need to run 25 psi at 4500. Map the boost if you don't have flyby wire throttle mapping to maintain the cylinder pressure the engine will cope with happily. If this requires 17 psi at 4500 increasing to 30 psi at 9000 who cares nor will the engine!! Assuming we are using the fuel of quality that rob82 suggests then 11:1 and boost is no issue.

We were hoping to run 11:1 on a 2.5L VQ, at any more than 15psi the cylinder pressure would spike. Power was made more easily with the compression at 8.8:1 with lower cylinder pressures. As we are designing it for track we decided lower compression was a must and turbo response less critical. Street applications you could argue the opposite I guess.

The cylinder pressure spike would be (if it is a good simulation) detonation - that'd be due to being octane limited. Cylinder pressure would go up exponentially if you went driving past the point of being knock limited on the mission for more power, but gaining power using controlled combustion should not be anywhere near exponential.

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now



  • Similar Content

  • Latest Posts

    • And finally, the front lower mount. It was doubly weird. Firstly, the lower mount is held in with a bracket that has 3 bolts (it also acts as the steering lock stop), and then a nut on the shock lower mount itself. So, remove the 3x 14mm head bolts , then the 17mm nut that holds the shock in. From there, you can't actually remove the shock from the lower mount bolt (took me a while to work that out....) Sadly I don't have a pic of the other side, but the swaybar mounts to the same bolt that holds the shock in. You need to push that swaybar mount/bolt back so the shock can be pulled out past the lower control arm.  In this pic you can see the bolt partly pushed back, but it had to go further than that to release the shock. Once the shock is out, putting the new one in is "reverse of disassembly". Put the top of the shock through at least one hole and put a nut on loosely to hold it in place. Put the lower end in place and push the swaybar mount / shock bolt back in place, then loosely attach the other 2 top nuts. Bolt the bracket back in place with the 14mm head bolts and finally put the nut onto the lower bolt. Done....you have new suspension on your v37!
    • And now to the front.  No pics of the 3 nuts holding the front struts on, they are easy to spot. Undo 2 and leave the closest one on loosely. Underneath we have to deal with the wiring again, but this time its worse because the plug is behind the guard liner. You'll have to decide how much of the guard liner to remove, I undid the lower liner's top, inside and lower clips, but didn't pull it full off the guard. Same issue undoing the plug as at the rear, you need to firmly push the release clip from below while equally firmly gripping the plug body and pulling it out of  the socket. I used my fancy electrical disconnect pliers to get in there There is also one clip for the wiring, unlike at the rear I could not get behind it so just had to lever it up and out.....not in great condition to re-use in future.
    • Onto the rear lower shock mount. It's worth starting with a decent degrease to remove 10+ years of road grime, and perhaps also spray a penetrating oil on the shock lower nut. Don't forget to include the shock wiring and plug in the clean.... Deal with the wiring first; you need to release 2 clips where the wiring goes into the bracket (use long nose pliers behind the bracket to compress the clip so you can reuse it), and the rubber mount slides out, then release the plug.  I found it very hard to unplug, from underneath you can compress the tab with a screwdriver or similar, and gently but firmly pull the plug out of the socket (regular pliers may help but don't put too much pressure on the plastic. The lower mount is straightforward, 17mm nut and you can pull the shock out. As I wasn't putting a standard shock back in, I gave the car side wiring socket a generous gob of dialectric grease to keep crap out in the future. Putting the new shock in is straightforward, feed it into at least 1 of the bolt holes at the top and reach around to put a nut on it to hold it up. Then put on the other 2 top nuts loosely and put the shock onto the lower mounting bolt (you may need to lift the hub a little if the new shock is shorter). Tighten the lower nut and 3 upper nuts and you are done. In my case the BC Racing shocks came assembled for the fronts, but the rears needed to re-use the factory strut tops. For that you need spring compressors to take the pressure off the top nut (they are compressed enough when the spring can move between the top and bottom spring seats. Then a 17mm ring spanner to undo the nut while using an 8mm open spanner to stop the shaft turning (or, if you are really lucky you might get it off with a rattle gun).
    • You will now be able to lift the parcel shelf trim enough to get to the shock cover bolts; if you need to full remove the parcel shelf trim for some reason you also remove the escutcheons around the rear seat release and you will have to unplug the high stop light wiring from the boot. Next up is removal of the bracket; 6 nuts and a bolt Good news, you've finally got to the strut top! Remove the dust cover and the 3 shock mount nuts (perhaps leave 1 on lightly for now....) Same on the other side, but easier now you've done it all before
    • OK, so a bunch of trim needs to come off to get to the rear shock top mounts. Once the seat is out of the way, the plastic trim needs to come off. Remove 2 clips at the top then slide the trim towards the centre of the car to clear the lower clip Next you need to be able to lift the parcel shelf, which means you need to remove the mid dark trim around the door, and then the upper light trim above the parcel shelf. The mid trim has a clip in the middle to remove first, then lift the lowest trim off the top of the mid trim (unclips). At the top there is a hidden clip on the inner side to release first by pulling inwards, then the main clip releases by pulling the top towards the front of the car. The door seal comes off with the trim, just put them aside. The the lighter upper trim, this is easy to break to top clips so take it carefully. There is a hidden clip towards the bottom and another in the middle to release first by pulling inwards. Once they are out, there are 3 clips along the rear windscreen side of the panel that are hard to get under. This is what the rear of the panel looks like to assist:
×
×
  • Create New...