Jump to content
SAU Community

Recommended Posts

Sorry this has probably been covered a million times but I searched for 45mins+ and couldn't find the specifics. I have an RB25DET from S2 33 with PFC and Z32 and GT3071, it has the typical reversion stalling problem. From what I've read it's to do with the AFM distance from the turbo inlet and something to do with the bends and smooth surface of the piping. What I want to confirm is, some bends are needed and it needs to be a decent distance from the turbo inlet, correct? I'm basically running some silicone hose joiners/bends and the AFM and a metal reducer. Should I be looking at trying to reduce the use of the silicone hose/joiner/bend things and going mainly metal? Would making up a bracket and attaching it to the body help or is that just stupid lol? Any tips, tricks etc?

Hope it was to long winded and confusing.

Cheers!

Link to comment
https://www.sau.com.au/forums/topic/452462-how-to-fixavoid-reversion-stalling/
Share on other sites

Also BOV return angle plays a big part.

Currently have an aftermarket BOV in the standard place near the TB plumbed into the intake at a 90degree like a T fitting. How should it be plumbed in?

Thanks Ben, anyone else with more insight? Because it does it when there's not much boost and load too, for example if I'm cruising doing 100km/hr and put the clutch in for a few seconds or if I'm cruising and just clutch in and brake.

Ben is on the money. Also correct me if I am wrong, but you will never fix the stalling if you are getting reversion from the turbo while using an afm. You will need a map sensor to fix it. (Or make it a blow through setup, though I have never used one or seen one that works well.)

Edited by Stagea97

More or less, yes.

The factory plumbing is a good guide. There's a decent bend and a half in the rubber to the AFM, plus it is convoluted which helps to soak up some of the reverse flow. Smooth bends will always tend to allow a bit more reversion, but they are more desirable for a number of other reasons, so we have to live with them. The angle of the factory BOV return is also pretty steeply aimed at the turbo inlet. I think (per what Ben said) that that is probably the biggest effect.

Be aware though, that the whole factory system, AFM, turbo, BOV, pipework, was designed about an engine only pulling enough air for about 180 fwKW and about 7 psi of boost. Fit bigger turbos, run much higher boost, and there ends up being a lot more air needing to be dealt with when the BOV vents. At some point it becomes inevitable that you have more than can recirculate neatly and some will have to spill back through the AFM. It's hard to know where/when you'll get to that point on any given setup though, and hence whether effort spent on "fixing" reversion will yield results. That said, whenever your BOV return is clearly not right (as yours would appear to be), then you'd be silly not to try.

Take a pic - show us how far away the AFM is from the turbo inlet.

A simple rule of thumb is have the AFM as far away from the turbo inlet as possible, then you have no issue. If you can move it even 5-10cm, that can be all the difference that is needed. Hence most people with singles and AFM is pretty much as close to the headlight/guard as it can get.

Ben is on the money. Also correct me if I am wrong, but you will never fix the stalling if you are getting reversion from the turbo while using an afm. You will need a map sensor to fix it. (Or make it a blow through setup, though I have never used one or seen one that works well.)

Totally wrong.

Damn haha. What parts are wrong? I thought having air coming back through the blades towards the afm in bursts would cause the afm to read air in bursts causing fueling in bursts also. Also a map would be placed in the plenum and wouldn't be affected?

Damn haha. What parts are wrong? I thought having air coming back through the blades towards the afm in bursts would cause the afm to read air in bursts causing fueling in bursts also. Also a map would be placed in the plenum and wouldn't be affected?

I think he's referring to you saying it can't be totally fixed is wrong.

The car is in pieces so can't take a pic, also don't have any pics from before as the bay was ugly so not worth taking pics of ;)

The stalling and AFM reversion can be two different things.

1. Stalling due to ATMO venting BOV while running AFM - this can be tuned around. ECU expects air to return, it isn't - so car stalls.

2. Reversion over the AFM - AFM can be too close to the turbo, reversion isn't just the recirc of the BOV and air directed in the wrong way but being to close to the compressor wheel where there is a lot of turbulence.

Simply moving the AFM further away will fix reversion over the AFM. Hell I've seen 500rwkw+ single setups with AFM working fine, but the AFM is as far away as possible from the intake.

Moving the AFM however will not fix the stalling issues that relate to BOVs, that comes to the tune.

Also remember factory BOVs leak at idle, hence they MUST be plumbed back. GTR BOVs do this as well, reason being is to reduce compressor surge in lower RPMs. People that have changed to aftermarket BOVs on GT-Rs and running larger twins - have at times have surging in low RPM/high load scenarios. This is partly the cause as there is no bleeding of the air (the second being the factory piping, but thats another discussion).

I understand you can easily tune around having an atmospheric bov.

So you're saying that if you're having problems with having a too tight of a bov that's causing flutter, you can move the afm further away from the turbine and it will fix the stalling?

I understand you can easily tune around having an atmospheric bov.

So you're saying that if you're having problems with having a too tight of a bov that's causing flutter, you can move the afm further away from the turbine and it will fix the stalling?

No that is not what I said at all.

Because the AFM is a hot wire it can not identify which way air is traveling, in many cases the ECU commends for more fuel when there is a current change, that includes when air is bounced at it through the turbocharger. It causes an momentarily richness, hence the idle hunt or stall.

To fix it, Trace the tables in primary fuel map of when the engine is off throttle, deduct a small VE of fuel out of those blocks, and that usually does the trick.

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now


  • Similar Content

  • Latest Posts

    • Wrt the engine, you're very much limited by 'production quality' as to how much extra power you can extract from them (I'm talking i6 red-motor) -- a lot here depends on how 'authentic' or 'period correct' you want the modifications to be... ...I'm too old... <grin>...the first true performance engine Holden made, was in the HD/HR models ~ this was the 'X2' performance pack...it came with twin downdraft strombergs on an otherwise unimproved intake manifold, with a two piece exhaust manifold (reckoned to be as good as extractors)... ....these engines were built upon the '179HP' cylinder block, which included extra webbing in the casting to make it stronger and less susceptible to block distortion... The next performance i6 came out with the HK Monaro (also found it's way into the LJ GTR Torana ... the car I wish I hadn't sold)...it had pretty much the same manifold setup, but was built against the '186S' block...this block retained all the extra webbing of the 179HP block, but added a forged steel crankshaft (instead of the stock cast crankshaft), because it was possible to snap the crank... ...apart from the inherent weaknesses in the stock (cast crank) blocks, the next limiting factor is the cylinder head porting & combustion chamber design, and the actual valve sizes. Back in the day, you could buy a 'yella terra' cylinder head (from stage 1 to stage 5 gradients), and this was the way to get serious power out of them -- with the extra breathing of these heads, you could fit a triple SU or DCOE Weber setup... ...obviously, these mods were a waste of time on a stock cylinder head/camshaft grind. My housemate rebuilt the i6 in his VH dunnydore about 6 months back -- this is a 186S block with the 12port 2850 blue motor head and intake/exhaust manifolds, with a dual throat Weber off an XF Falcon mounted on an adapter plate ; it's not a bad makeup...got more torque & fuel economy just light-footing it about on the first throat, but stand on it and it makes more giddy-up than the standard 2850 blue motor that it replaced. Personal note: I'd just fit an RB30 and be done it it 馃槂  
    • Thanks for sharing. That's a great video! My buddy is doing the same thing on his build (S chassis struts and towers). He's building an S14 with billet RB30 shooting for 2000whp... a race car with a TH400 just like this video. For a road car I just couldn't go this route as the strut has to be almost vertical and the caster is not going to pivot correctly (let alone camber gain). You think the R32 frontend is bad, wait till you put a MacPherson strut on without modeling it all in Solidworks to check geometry. I'm not saying it's a bad way to do it but I'd be really curious to see how it affects the geometry.
    • Hey Christof and welcome!  Sounds like an awesome project! I'm not sure many of the regular users on here would know much about the HK but I could be wrong.  Looking forward to updates.
    • As long as its NOT a HyperSHITtune, youll be fine.
    • First time visitor and currently getting ready to start work on my HK Premier.  Its all stock, 186 with 3 on the tree.  The only mod i have right now is extractors.  I am hoping to get some guidance on slightly modifying the engine to bring a little more power. Just going for a nice, comfortable cruiser.  The car is very straight, however i have been out of the country for 20 years and its been gathering dust at a family farm.  Will be doing quite a bit of body work to cut out some small rust areas (frnt quarter panels and a few other small bits) and fix up the paint.  Will be redoing the interior (its currently black and the seats are in real need of recovering and respringing the driver side (its front bench seat).  The dash needs a little TLC, but no real damage.  As my heater has degraded I am considering fitting something after-market that will be both heater/AC (recommendations here are always welcome). Wanting something discrete that will allow me to use the same controls and not be obvious once inside the car.   For the engine, i have been told i could consider upgrading my cam (imagine i would need a new head as well) and putting a new carby (currently the original stromberg).  However not sure what is going to be the best route.  Would certainly welcome any comments/suggestions.  As  a final step I am looking at changing the wheels. Current hubcaps are in dire need of refurbishment or replacement (imagine its a bit like hens teeth).  Thinking of some clean/classic looking mags (7-inch should be more than enough - not going for a large change in look).  Welcome any comments/advice and of course any questions. 
  • Create New...