Jump to content
SAU Community

Recommended Posts

I dont know em exact but off the top of my head somthing like :

rb20 and rb30 2000cfm

Rb25 2500cfm

Rb26 2600cfm

 

As i stated unsure on the figures and ill add even the terminology used.

 

Maybe someone will pop in!

 

Or research.

 

 

Figure I have is 265 cfm but I can't remember where i got that from.

(Its written in my notebook so it must be true!)

OK so I looked it up: stock is 234 cfm the above number is a ported head from Lewis engines.

  • Like 1

2500 cfm = 70792.11 l/m

70792.11 litters per minute

Depending on your project and if the figures are close or you get em...

How and why do you need them in increments, increments of and for what?

The engine running ? At wot ? Removed ?
Zorst on? Vs temp? Or maybe the redneck in me is missing somthing here ?

Gts boy ? Are you telling him how to scale it or apply math to figures? [emoji3166][emoji856][emoji51]

59 minutes ago, Slap said:

2500 cfm = 70792.11 l/m

Gts boy ? Are you telling him how to scale it or apply math to figures? emoji3166.pngemoji856.pngemoji51.png

No, I was telling him that your numbers were approximately 10 times higher than they should be.

Heads are flowed on a flow bench with a certain suction pressure applied. 10 inches of water, or 25, or 28. Head flow is not expressed in an engine running configuration. It is always on a flow bench at a certain depression. The depression used is important, because, of course, the measured flow will be a lot higher at 28" than at 10".

"Increments" refers to increments of valve lift. It is important to flow a head at various valve lifts so that you can see what it does in the cam lift period where the head is close to the seat, and in mid lift, and at max lift. It's a bit like a dyno sheet where area under the curve can tell you things that the peak number alone can't.

  • Like 2
Hey,
I am looking for STOCK RB25DET head flow figures. The best would be in small increments, as I need it for a model.
Have searched the internet up and down and it seems to me that somebody in here could help me with some good numbers.
Thanks guys!
Cheers
Martin


IMG_1560228132.293586.jpg
  • Like 5
On 6/11/2019 at 6:43 AM, t_revz said:

IMG_1560228202.217199.jpg

Thanks! Was looking for this for a long time!

Am I right in the assumption that Cyl 2 is stock and Cyl 1 is ported?
The gains are impressive, especially the low lift area is really nice. I think you a very torquey engine there!

Cheers!
Martin

Thanks! Was looking for this for a long time!
Am I right in the assumption that Cyl 2 is stock and Cyl 1 is ported?
The gains are impressive, especially the low lift area is really nice. I think you a very torquey engine there!
Cheers!
Martin


Correct cyl2 was stock. I spent a fortune on the head but have never had the rest of the engine 100% right since building and it’s never been much of a priority to rectify.

Can’t tell with results so far if it was worth the money getting it done. One day I’ll finish it off
Can you detail the extent of the porting and the cost? Also the intent of the build, power target, expected rev range, any of those things if you had them when you went into it?

 

So I was initially aiming for 420-440rwhp with a hypergear SS2 on ported factory manifold, Poncams/gears. The guys doing the head recommended removing all quench areas and looking at the Det damage visible on them it made sense at the time. I spent probably 40 hours porting it myself but when I went to flow test they said I was too aggressive in some areas and not enough in others. So I bought another head and let them do it all. Never intended to go above 7200. It was more a learning project than going all out.

 

I asked them to remove quench areas and $1000 worth of porting. Bought poncams, new valves, springs, lifters and external VCT feed in case I got a 30 block down the track. I traded in standard stem seals and guides for a discount on custom ones they made for me. Oil drains enlarged.

 

So I guess I spent a bit over 5k on the head. When I said it’s never been 100% it’s because it’s had fuel dilution since initial tune. I’ve found multiple small issues which have improved the engine/response but the samples have never improved . I now have found compression on #3 changes regularly especially when cold. It has forged JE pistons/Hastings rings. I’m unsure if a ringland or ring got damaged on first tune, or something wasn’t set correctly? Leak down test was 9% all cylinders but maybe it seals better due to being stationary? I hope to remove pistons over winter and find something.

 

I’ll upload head photos after lunch IMG_1297.thumb.jpg.0eec4a73f801677fe9e43f94a9e70a7b.jpg

  • Thanks 1

That's quality information. The kernel is probably that ~$1000 of porting work gained a pretty good 20 - 25 cfm across the lift range.

An important thing for readers to keep in mind is that the peak numbers on your table/chart are at 1/2" lift and there has probably never been an RB with that much lift. 9-10mm being most common, 10-11 mm being on the extreme side. Doesn't affect the exhaust side so much, but it nibbles away at the cfm number for the inlet by about 10-15 cfm.

Question: "Race Seats" on the scanned paperwork. Implies they were set up properly, multi-angle or radiused or similar? The seats can have a huge impact on the flow - more than the port itself, especially at low lifts.

  • Like 1
That's quality information. The kernel is probably that ~$1000 of porting work gained a pretty good 20 - 25 cfm across the lift range.
An important thing for readers to keep in mind is that the peak numbers on your table/chart are at 1/2" lift and there has probably never been an RB with that much lift. 9-10mm being most common, 10-11 mm being on the extreme side. Doesn't affect the exhaust side so much, but it nibbles away at the cfm number for the inlet by about 10-15 cfm.
Question: "Race Seats" on the scanned paperwork. Implies they were set up properly, multi-angle or radiused or similar? The seats can have a huge impact on the flow - more than the port itself, especially at low lifts.


agreed the lift has raised using poncams over standard but they tested at a much higher lift. About 0.350” column is probably closest at ~235cfm

As for the question about seats I can’t answer it. It was done in 2012 and I can’t remember what we agreed on. Not sure if I have any close up photos that might reveal an answer. I’ll check soon
  • Like 1

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now


  • Similar Content

  • Latest Posts

    • Thanks for the reply mate. Well I really hope its a hose then not engine out job
    • But.... the reason I want to run a 60 weight is so at 125C it has the same viscosity as a 40 weight at 100C. That's the whole reason. If the viscosity changes that much to drop oil pressure from 73psi to 36psi then that's another reason I should be running an oil that mimics the 40 weight at 100C. I have datalogs from the dyno with the oil pressure hitting 73psi at full throttle/high RPM. At the dyno the oil temp was around 100-105C. The pump has a 70psi internal relief spring. It will never go/can't go above 70psi. The GM recommendation of 6psi per 1000rpm is well under that... The oil sensor for logging in LS's is at the valley plate at the back of  the block/rear of where the heads are near the firewall. It's also where the knock sensors are which are notable for 'false knock'. I'm hoping I just didn't have enough oil up top causing some chatter instead of rods being sad (big hopium/copium I know) LS's definitely heat up the oil more than RB's do, the stock vettes for example will hit 300F(150C) in a lap or two and happily track for years and years. This is the same oil cooler that I had when I was in RB land, being the Setrab 25 row oil cooler HEL thing. I did think about putting a fan in there to pull air out more, though I don't know if that will actually help in huge load situations with lots of speed. I think when I had the auto cooler. The leak is where the block runs to the oil cooler lines, the OEM/Dash oil pressure sender is connected at that junction and is what broke. I'm actually quite curious to see how much oil in total capacity is actually left in the engine. As it currently stands I'm waiting on that bush to adapt the sender to it. The sump is still full (?) of oil and the lines and accusump have been drained, but the filter and block are off. I suspect there's maybe less than 1/2 the total capacity there should be in there. I have noticed in the past that topping up oil has improved oil pressure, as reported by the dash sensor. This is all extremely sketchy hence wanting to get it sorted out lol.
    • I neglected to respond to this previously. Get it up to 100 psi, and then you'll be OK.
    • I agree with everything else, except (and I'm rethinking this as it wasn't setup how my brain first though) if the sensor is at the end of a hose which is how it has been recommended to isolate it from vibrations, then if that line had a small hole in, I could foresee potentially (not a fluid dynamic specialist) the ability for it to see a lower pressure at the sensor. But thinking through, said sensor was in the actual block, HOWEVER it was also the sensor itself that broke, so oil pressure may not have been fully reaching the sensor still. So I'm still in my same theory.   However, I 100% would be saying COOL THE OIL DOWN if it's at 125c. That would be an epic concern of mine.   Im now thinking as you did Brad that the knock detection is likely due to the bearings giving a bit more noise as pressure dropped away. Kinkstah, drop your oil, and get a sample of it (as you're draining it) and send it off for analysis.
    • I myself AM TOTALLY UNPREPARED TO BELIEVE that the load is higher on the track than on the dyno. If it is not happening on the dyno, I cannot see it happening on the track. The difference you are seeing is because it is hot on the track, and I am pretty sure your tuner is not belting the crap out of it on teh dyno when it starts to get hot. The only way that being hot on the track can lead to real ping, that I can think of, is if you are getting more oil (from mist in the inlet tract, or going up past the oil control rings) reducing the effective octane rating of the fuel and causing ping that way. Yeah, nah. Look at this graph which I will helpfully show you zoomed back in. As an engineer, I look at the difference in viscocity at (in your case, 125°C) and say "they're all the same number". Even though those lines are not completely collapsed down onto each other, the oil grades you are talking about (40, 50 and 60) are teh top three lines (150, 220 and 320) and as far as I am concerned, there is not enough difference between them at that temperature to be meaningful. The viscosity of 60 at 125°C is teh same as 40 at 100°C. You should not operate it under high load at high temperature. That is purely because the only way they can achieve their emissions numbers is with thin-arse oil in it, so they have to tell you to put thin oil in it for the street. They know that no-one can drive the car & engine hard enough on the street to reach the operating regime that demands the actual correct oil that the engine needs on the track. And so they tell you to put that oil in for the track. Find a way to get more air into it, or, more likely, out of it. Or add a water spray for when it's hot. Or something.   As to the leak --- a small leak that cannot cause near catastrophic volume loss in a few seconds cannot cause a low pressure condition in the engine. If the leak is large enough to drop oil pressure, then you will only get one or two shots at it before the sump is drained.
×
×
  • Create New...