Jump to content
SAU Community

Recommended Posts

Tuning the wastegate to do it. That is all. Most people want the boost to not fall off like the most recent example. Those also look like dyno runs with an Auto/Torque converter setup, which does fun things to the graph.

The boost tapers down like that because the turbo cannot supply the same amount of air at 7000rpm that it can at 3000 in terms of PSI. That, or the tuner has decided that it tapering off like that is what someone chose to do.

IF you have a wastegate that can't bleed enough air to slow the turbine, and IF that turbo can flow enough air to feed the engine at high RPM, you get 'boost creep' which is a rise of boost pressure beyond what you are capable of controlling and/or want.

None of these show symptoms of that, but if you had a run that was 20psi at 3000rpm, and 27psi at 7000rpm, it could be an example of that. Or simply that the person wanted boost later for their own reasons...

The dyno graphs don't always show the full context.

right, but fundamentally, for a given mechanical setup, you are either using all the torque (and therefore power) it will give, or you are choosing to run it less efficiently.

Many tuners will have a practice of identifying peak available torque and then winding it back a couple of % for safety, but unless you are working around a very specific issue like a weak gearbox, there is nothing to be gained by making 20 or 30% less than the engine can

therefore on the first examples, as we see, changing cams (graph 2) influences the quantity of torque at high revs its OK for me. so a tuner can act on the wastegate via the boost controller to increase the boost at high revs? on the last example, the boost does not decrease ok, but the torque does. this can come from cams etc etc ok. but on the other curves the boost is not constant, it increases, this is what I find strange to my mind. even more so if it comes from the relief valve. sorry I'm very new don't blame me. in my mind I couldn't imagine how the boost could be higher after the spool

 

There are a few variables here, some are relevant but not critical (IMHO) to help answer your question.

The two major things:

1) Ignoring anything to do with forced induction - all engines have their own natural torque curve, and it will ALWAYS roll over higher in the rpm.  There is a fixed relationship between power and torque.  When dealing with kw and nm, the relationship between them is roughly:

kw = (rpm * nm) / 9549

nm = (kw / rpm) * 9549

The peak torque of an engine (without boost) will typically climb until somewhere nearish the middle of it's operating rev range, give or take a bit - then start dropping again.   The nearer the minimum and maximum rpm of the engine the steeper that drop off tends to be.

2) Boost simply increases the density of the air going into the engine, which inflates the torque at that point.  The ramp up in the torque curve you see on a turbo engine is due to the boost rising, but it's essentially just multiplying the torque you'd see if it was naturally aspirated.  The roll over you see at the end will typically be what would have always happened with the engine, whether it was naturally aspirated or turbocharged.   If the torque never started dropping then power would climb infinitely.

The cool thing about this is you absolutely can tune the power delivery to suit the needs of the owner and/or the limitations of the car, and I regularly do this.    With modern turbos we've got to the point where a setup that someone may run well over 20psi of boost with could actually reach target boost well under 4000rpm if the tuner/owner WANTED to - and a lot of people seem to do this when there is actually no realistic benefit, generally it just adds a massive amount of strain to the engine and drivetrain and often actually makes the car harder to drive.

As a general rule I tend to tune the boost curves for cars I tune to reach a "useful" torque level through the rev range and will often end up with a curve that ramps hard to a point, then creeps for the rest of the rev range - not to make the boost curve "soft" as such, but more to make sure its neither laggy nor pointlessly violent in it's delivery.   There have been cars I've tuned to be almost like a centrifugal supercharger (or naturally-aspirated-ish) where they actually only hit like 8psi of boost before opening the gate, then ramp up the next 10psi over the rev range... if the car is "loose enough" to drive.

On the flip side I've tuned a car that had stock cams and the engine's natural torque curve fell over HARD in the higher rpm and resulted in a slightly awkward power curve to work with, in that case I actually started ramping up boost to boost torque in a way to offset the engines "NA" torque drop off... at peak rpm actually running a good 5psi+ more boost that what the "flat curve" would have defined.  This gave the owner an extra 500rpm or so of useable rev range, and had a fairly solid impact on times he was running at motorsport events due to being able to hold gears a bit longer and also falling into a more useful part of the rev range in the following gears.

Here's an example of an RB in a GTSt I've done the "softened" boost curve to not pointlessly ramp straight to the max boost target early in the rpm, but still made sure it builds useful boost.  If you went in the car you'd not guess at all that the boost curve was doing anything "weird", it feels like it spools immediately and accelerates relentlessly (traction dependent) and holds to max rpm.   I don't know if you'd guess what the boost curve was doing by driving the car, or even looking at the dyno plot... but imho it suits the combination.

May be an image of text

 

  • Like 3

Here's the torque curves from the car I ramped boost up later in the rpm to allow a slightly wider useful power curve - the power curve is a bit weird shaped also thanks to the TVIS (or whatever they call it with the 4EFTE in this Starlet) which changes the volume of the intake manifold throughout the rpm range, but you can see that the green power curve actually holds later on with the extra boost... but looks almost more like the kind of thing you'd expect from a cam or exhaust change

No photo description available.

3 minutes ago, thx78 said:

so on the first graph the boost and the torque during spooling at 4000 are deliberately limited? and then there is a progressive increase in boost with the revs

That's torque and power, it's all from a single run.  The boost curve is "held back" from it's peak target in the 3500rpm to 5000rpm range from memory, so it ramps hard to something like 18psi then climbs more progressively to 23psi nearer 5000rpm.   It makes the torque (and power) ramp more "natural" and less hard on parts and traction, it doesn't feel artificially held back.   

Edited by Lithium
3 minutes ago, Lithium said:

C'est du couple et de la puissance, tout cela à partir d'un seul tour. La courbe de suralimentation est retenue de 3 500 à 5 000 tr/min de mémoire, donc elle monte fortement jusqu'à quelque chose comme 18 psi, puis monte plus progressivement jusqu'à 23 psi plus près de 5 000 tr/min.

so you can decrease or increase the boost depending on the diet as you wish?  

 

by acting on the wastegate?

6 minutes ago, thx78 said:

so you can decrease or increase the boost depending on the diet as you wish?  

 

by acting on the wastegate?

Correct.  In the case of the 500kw dyno plot I showed you the car actually runs two boost control solenoids for boost control and a 5psi wastegate spring.  It allows me to control how much boost pressure is applied to both sides of the wastegate valve at any point and fairly accurately control boost target as a result.

I've tuned it so that it's able to target anywhere from 5psi to 25psi depending on what's needed.  The target tables I've set up in that car are Gear vs RPM, so every gear has potential for a different boost (and torque) curve.   First and second gear have quite low boost targets, third gear actually has different target boost all the way through the rpm range as it's a stock RB25 gearbox - the boost targets have been chosen to maintain a peak of 600nm (what the owner has set as the maximum torque he's happy with putting through the stock 3rd gear) but it carries that to the rev limiter.   The boost curve to achieve that is something of a ramp up, then hold, then ramp up again and the power curve looks more like a flat line haha.

 

Edited by Lithium
  • Like 1
1 hour ago, thx78 said:

I am impressed with all this level of adjustment. I didn't expect all this possibility

There is a LOT of stuff that can be done, it all depends on how much time and money you want to spend on doing in.  Not all ECUs will be able to do it, and the more control you need the more time and knowledge needs to be put into making it work. 

If you're willing to spend the time and money and have the right hardware and skills involved there's a lot that can be done. 

Edited by Lithium

 

I'm still not sure what you are trying to acheive, but I wanted to clarify something about Lithium's response to your question...

20 hours ago, thx78 said:

so you can decrease or increase the boost ......as you wish?  

 

20 hours ago, Lithium said:

Correct.....

 

Only within certain limits. All of the examples Lithium gave were of detuning for a particular reason.

Before the engine/turbo/wastegate combination has hit full boost, you can't increase it....the wastegate is shut and the turbo is pushing as hard as it can

Once the combination has hit the target (controlled) boost, you generally have full control over whether it makes more or less boost, because it is being limited/reduced from its potential. This is generally done by controlling the wastegate

In the top end, with an undersized turbo, it is possible you won't get to your target boost anymore if the turbo is choking up. In this case you cannot increase boost any more without changing the setup.

2 hours ago, thx78 said:

to have this type of adjustment possible with a curve as I wish, what budget (engine) should be planned?

No change in cost compared to any decent build, other than tuning time to get the engine to make less power than it is able to at a certain point

59 minutes ago, Duncan said:

Only within certain limits. All of the examples Lithium gave were of detuning for a particular reason.

 

Good points!  Took those for granted - though I *did* actually give an example of winding boost up more than it had been before where I wasn't actually specifically looking for more peak power.  The Toyota Starlet dyno plot that I shared and mentioned showed an overlay from the previous tune it had and the one I'd redone, I left the boost targetting the same as the old tune but then after peak power I ramped boost up by a good 5psi or so over what the old tune had at the same rpm.

The reason I felt comfortable with this (though the owner of the car had a "are you sure?" moment when I suggested it) is that the setup wasn't turbo limited, it was largely head sealing limited and the owner was a bit concerned as for the last few seasons he'd had issues with head lifting - sometimes not completing an event without having some headgasket issue, so he didn't want to run any more boost than it was.

The reasons I was ok with raising the boost a good 5+psi MORE than that was that I left it where it was in the middle, and only increased it where VE (and therefore cylinder pressure vs psi) were dropping hard and I didn't stop the torque from dropping, just reduced the drop.  Well, there is that and the fact that the previous tuner had it overtimed by near 7degrees at peak torque - but that's another story haha.   

I didn't really go into detail about that "turning it up more" thing but now you've mentioned the "not detuning", sometimes the boost *can* be turned up higher than you'd expect if the setup allows for it and you do it smartly.  I've tuned things to run 30psi on BP98 "safely" that a few years ago (or still?) people would cry that it was a stupid idea - but given they were well intercooled, low EMAP turbos and only doing that kind of boost where VE is dropping etc I was pretty confident it wasn't as cowboy as it sounded at face value and we never ended up with issues as a result of it.   

 

Edited by Lithium
  • Like 1
24 minutes ago, thx78 said:

spacer.pngspacer.pngone thing escapes me, if the turbo spool provides the maximum boost and we can't control anything before that, how can the boost be higher by it alone.

 

here around 27 psi at 4200 then up to 32 psi at 6500 rpm

 

how does the tuner do this

we can only guess exactly what happened from our keyboards, but to me it looks like they were targeting 27 but the wastegate was too small or poorly controlled and the boost crept up, that is quite common

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now



  • Similar Content

  • Latest Posts

    • I had 3 counts over the last couple of weeks once where i got stranded at a jdm paint yard booking in some work. 2nd time was moving the car into the drive way for the inspection and the 3rd was during the inspection for the co2 leak test. Fix: 1st, car off for a hour and half disconnected battery 10mins 4th try car started 2nd, 5th try started 3rd, countless time starting disconnected battery dude was under the hood listening to the starting sequence fuel pump ect.   
    • This. As for your options - I suggest remote mounting the Nissan sensor further away on a length of steel tube. That tube to have a loop in it to handle vibration, etc etc. You will need to either put a tee and a bleed fitting near the sensor, or crack the fitting at the sensor to bleed it full of oil when you first set it up, otherwise you won't get the line filled. But this is a small problem. Just needs enough access to get it done.
    • The time is always correct. Only the date is wrong. It currently thinks it is January 19. Tomorrow it will say it is January 20. The date and time are ( should be ! ) retrieved from the GPS navigation system.
    • Buy yourself a set of easy outs. See if they will get a good bite in and unthread it.   Very very lucky the whole sender didn't let go while on the track and cost you a motor!
    • Well GTSBoy, prepare yourself further. I did a track day with 1/2 a day prep on Friday, inpromptu. The good news is that I got home, and didn't drive the car into a wall. Everything seemed mostly okay. The car was even a little faster than it was last time. I also got to get some good datalog data too. I also noticed a tiny bit of knock which was (luckily?) recorded. All I know is the knock sensors got recalibrated.... and are notorious for false knock. So I don't know if they are too sensitive, not sensitive enough... or some other third option. But I reduced timing anyway. It wasn't every pull through the session either. Think along the lines of -1 degree of timing for say, three instances while at the top of 4th in a 20 minute all-hot-lap session. Unfortunately at the end of session 2... I noticed a little oil. I borrowed some jack stands and a jack and took a look under there, but as is often the case, messing around with it kinda half cleaned it up, it was not conclusive where it was coming from. I decided to give it another go and see how it was. The amount of oil was maybe one/two small drops. I did another 20 minute session and car went well, and I was just starting to get into it and not be terrified of driving on track. I pulled over and checked in the pits and saw this: This is where I called it, packed up and went home as I live ~20 min from the track with a VERY VERY CLOSE EYE on Oil Pressure on the way home. The volume wasn't much but you never know. I checked it today when I had my own space/tools/time to find out what was going on, wanted to clean it up, run the car and see if any of the fittings from around the oil filter were causing it. I have like.. 5 fittings there, so I suspected one was (hopefully?) the culprit. It became immediately apparent as soon as I looked around more closely. 795d266d-a034-4b8c-89c9-d83860f5d00a.mp4       This is the R34 GTT oil sender connected via an adapter to an oil cooler block I have installed which runs AN lines to my cooler (and back). There's also an oil temp sensor on top.  Just after that video, I attempted to unthread the sensor to see if it's loose/worn and it disintegrated in my hand. So yes. I am glad I noticed that oil because it would appear that complete and utter catastrophic engine failure was about 1 second of engine runtime away. I did try to drill the fitting out, and only succeeded in drilling the middle hole much larger and now there's a... smooth hole in there with what looks like a damn sleeve still incredibly tight in there. Not really sure how to proceed from here. My options: 1) Find someone who can remove the stuck fitting, and use a steel adapter so it won't fatigue? (Female BSPT for the R34 sender to 1/8NPT male - HARD to find). IF it isn't possible to remove - Buy a new block ($320) and have someone tap a new 1/8NPT in the top of it ($????) and hope the steel adapter works better. 2) Buy a new block and give up on the OEM pressure sender for the dash entirely, and use the supplied 1/8 NPT for the oil temp sender. Having the oil pressure read 0 in the dash with the warning lamp will give me a lot of anxiety driving around. I do have the actual GM sensor/sender working, but it needs OBD2 as a gauge. If I'm datalogging I don't actually have a readout of what the gauge is currently displaying. 3) Other? Find a new location for the OEM sender? Though I don't know of anywhere that will work. I also don't know if a steel adapter is actually functionally smart here. It's clearly leveraged itself through vibration of the motor and snapped in half. This doesn't seem like a setup a smart person would replicate given the weight of the OEM sender. Still pretty happy being lucky for once and seeing this at the absolute last moment before bye bye motor in a big way, even if an adapter is apparently 6 weeks+ delivery and I have no way to free the current stuck/potentially destroyed threads in the current oil block.
×
×
  • Create New...