Jump to content
SAU Community

Recommended Posts

did you know... that a Garrett BB has an internal restrictor on the turbo cartidge itself :)

There is no need to fit to a GT series one thats for sure. Id be farily confindent a lot of others would be the same too

My GT30 has an internal .7mm one from the factory :(

Without a restrictor the turbo gets too much oil, which at high revs/boost forces oil down past the seals which gives you a smokey exhaust. This happened to mine at over 5000rpm using only 0.6 bar boost.

I'm pretty sure you don't have to have a restrictor for it, as its all ready built in. (as r31nismoid said)

The only way yours could have done that is if, the oil seal was too old and on its way out, or you have lots of blow by happeing causing it to break the oil seal.

the one that you can see is only the half of it.

there is a smaller one inside the actual cartridge.

I've seen mine as my turbo was ripped apart, and being garrett make HKS turbos i cant see it being any different

the one that you can see is only the half of it.

there is a smaller one inside the actual cartridge.

I've seen mine as my turbo was ripped apart, and being garrett make HKS turbos i cant see it being any different

Hey guys,

look at the pic, its a old style hks gt2530. Is that the restrictor in the picture??

I'm under the impression that it is.

Thanks

George

There probably is a specification around somewhere for minimum oil flow, but I have no idea what it is for ball bearing turbos, probably not very much.

The old sleeve bearing turbos that are oil cooled need half a gallon of oil per minute at fast idle (full oil pressure). But these sleeve bearing turbos use oil for cooling as well as lubrication. They usually have two 1.0mm restrictor holes in the front thrust bearing.

It is quite easy to disconnect the oil return to the sump and measure the actual flow into a container. Too much flow is not a good thing for two reasons. It steals oil from the rest of the engine, and lowers idle oil pressure, and all that oil has to get back out again. If it cannot escape easily, it is going to find its way out past the seals as has already been mentioned.

Ball races only need to be wet with a thin oil film, they don't need to be drowned in oil. The water in the bearing housing will carry away all the heat. I doubt if oil starvation is ever going to be a problem, unless there is a total blockage. But too much oil is probably a worse enemy.

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now


  • Similar Content

  • Latest Posts

    • Yup. You can get creative and make a sort of "bracket" with cable ties. Put 2 around the sender with a third passing underneath them strapped down against the sender. Then that third one is able to be passed through some hole at right angles to the orientation of the sender. Or some variation on the theme. Yes.... ummm, with caveats? I mean, the sender is BSP and you would likely have AN stuff on the hose, so yes, there would be the adapter you mention. But the block end will either be 1/8 NPT if that thread is still OK in there, or you can drill and tap it out to 1/4 BSP or NPT and use appropriate adapter there. As it stands, your mention of 1/8 BSPT male seems... wrong for the 1/8 NPT female it has to go into. The hose will be better, because even with the bush, the mass of the sender will be "hanging" off a hard threaded connection and will add some stress/strain to that. It might fail in the future. The hose eliminates almost all such risk - but adds in several more threaded connections to leak from! It really should be tapered, but it looks very long in that photo with no taper visible. If you have it in hand you should be able to see if it tapered or not. There technically is no possibility of a mechanical seal with a parallel male in a parallel female, so it is hard to believe that it is parallel male, but weirder things have happened. Maybe it's meant to seat on some surface when screwed in on the original installation? Anyway, at that thread size, parallel in parallel, with tape and goop, will seal just fine.
    • How do you propose I cable tie this: To something securely? Is it really just a case of finding a couple of holes and ziptying it there so it never goes flying or starts dangling around, more or less? Then run a 1/8 BSP Female to [hose adapter of choice?/AN?] and then the opposing fitting at the bush-into-oil-block end? being the hose-into-realistically likely a 1/8 BSPT male) Is this going to provide any real benefit over using a stainless/steel 1/4 to 1/8 BSPT reducing bush? I am making the assumption the OEM sender is BSPT not BSPP/BSP
    • I fashioned a ramp out of a couple of pieces of 140x35 lumber, to get the bumper up slightly, and then one of these is what I use
    • I wouldn't worry about dissimilar metal corrosion, should you just buy/make a steel replacement. There will be thread tape and sealant compound between the metals. The few little spots where they touch each other will be deep inside the joint, unable to get wet. And the alloy block is much much larger than a small steel fitting, so there is plenty of "sacrificial" capacity there. Any bush you put in there will be dissimilar anyway. Either steel or brass. Maybe stainless. All of them are different to the other parts in the chain. But what I said above still applies.
    • You are all good then, I didn't realise the port was in a part you can (have!) remove. Just pull the broken part out, clean it and the threads should be fine. Yes, the whole point about remote mounting is it takes almost all of the vibration out via the flexible hose. You just need a convenient chassis point and a cable tie or 3.
×
×
  • Create New...