Jump to content
SAU Community

Recommended Posts

Shane, have a read above at my previous posts. You'll see I said its not the best comparison.

Regardless, twins offer better turbo response due to less inertia.

Providing there is sufficient exhaust gas smaller turbo's are able to go from idle rpm to 80,000rpm quicker than a wheel 2x its size.

Why would Nissan throw ceramic turbines on their turbo's? To lower inertia and provide better response from the turbo.

i did i did :rolleyes:

But a turbo with double the hp ability doesn't have double the rotating dimensions, or double the rotating inertia

i'd tend to agree with that.

even with a big single, u can make them flow more hp by changing the rear housings, and when u do that u dont change the size or dimension of the wheels themselves.

i guess it's only going to be theories ubtil someone that's cashed up does some physical research into it.

But a turbo with double the hp ability doesn't have double the rotating dimensions, or double the rotating inertia

But I'm not saying the big turbo has double the 'intertia lag'. :)

If your at an rpm where the turbo is receiving sufficient exhaust gas for quick full spool then that is where you are able see/measure the inertia 'lag' so to speak.

----------

Shane; Parallel twins are well known to provide better response over a similiar sized big single. So no theory.

A large turbo has more of this inertia lag; a smaller turbo has less. Providing they are both at an rpm where they are able to spool easily the smaller turbo's will spool/spin up quicker. Simple physics.

Think back to 89 with the first release of the GTR. Why would nissan bother with the added expense of a twin turbo system?

Inertia is a function of the radius to the 4th power, so a turbo with a radius of 20mm will have an inertial factor of 160000mm^4, while a turbo with a radius of 30mm will have a factor of 810000mm^4 or about 5.1 times as much resistance to acceleration. Now there will be some detailed integrations of the actual masses in the rotor construction and the material used but pound for pound a larger turbo is a diminishing return for response so you increase cubes to offset that.

Sorry guys but the engineering wins. Twins for response. Singles for lag monster drag and dyno queens.

There was a debate about GT35's in either .82 and 1.06 sizes and which ones are better for drivability/traction etc on the race track. Most people said the .82 ones came on too strong and caused wheel spin where as the 1.06 could be controlled with the throttle.

So how can twins which are far more reponsive, be better for traction?! I thought they would wheel spin too much.

:stupid:

Edited by VHR32

joel not everyone drives/races a gtr....only blokes with no skill require four wheel drive. Real men drive gtst's!

the slight response difference between the twins or single isnt that big of a deal in most cases...maybe if your racing for sheep stations. In almost every circumstance you can offset it with something else that will make your car quicker around the track or on the street. As is the problem with most people is the cost involved in it all. Twin setups will always cost more then single.

VHR32 - ive raced with a .82 rear gt35r and i think a 1.06 rear would be better for control, but the lag side of things would outweigh the benefit of the control. I would rather then extra response from the .82 and control the power better with my foot, not only that but having a disadvantaged mechanical setup teaches you to be a better racer as it forces you to adapt rather then just relying on a more superior setup to improve your times/position.

There was a debate about GT35's in either .82 and 1.06 sizes and which ones are better for drivability/traction etc on the race track. Most people said the .82 ones came on too strong and caused wheel spin where as the 1.06 could be controlled with the throttle.

So how can twins which are far more reponsive, be better for traction?! I thought they would wheel spin too much.

:stupid:

broadly a big single is just as responsive as twins in its ideal operating range. problem is singles have a narrower and sharper effective rpm operating range, and this can have some disadvantages. singles and twins will both respond well from boost threshold until they max out, in the case of the twins say between 3500 and 7500 rpm, the single between 5000 and 7500 rpm. twins are more responsive but the power production is not as on/off. the sudden power production of the single is what brings the big bang and the loss of traction.

joel not everyone drives/races a gtr....only blokes with no skill require four wheel drive. Real men drive gtst's!

the slight response difference between the twins or single isnt that big of a deal in most cases...maybe if your racing for sheep stations. In almost every circumstance you can offset it with something else that will make your car quicker around the track or on the street. As is the problem with most people is the cost involved in it all. Twin setups will always cost more then single.

VHR32 - ive raced with a .82 rear gt35r and i think a 1.06 rear would be better for control, but the lag side of things would outweigh the benefit of the control. I would rather then extra response from the .82 and control the power better with my foot, not only that but having a disadvantaged mechanical setup teaches you to be a better racer as it forces you to adapt rather then just relying on a more superior setup to improve your times/position.

awww look at the little jealous kid :thumbsup:

Shane!! Mike!! Play nice or you will be fed vegetarian snags at the BBQ!!!! :thumbsup:

Sorry guys I made an error.

I was locked onto a solution for mass moment of inertia which is a solution in mm^4.

Basic rotating inertia is a quadratic with a solution in mm^2 but regardless the difference in the above example is 400mm^2 and 900mm^2 or 2.25 times the rotating inertia. So even with double the exhaust gas a larger turbo by 10mm is still going to exhibit a measurable lag response. Add to that tolerances will have to be greater in a larger turbo to account for inertial growth and life cycle creep.

ill show you jealous shane...your coming round tomorrow arvo for bbq yeh?

bring ya guns mate...its on like donkey kong!

my guns roll with me :)

i'll be there with empty pockets, and i'll be leavin with full pockets :sorcerer:

Shane!! Mike!! Play nice or you will be fed vegetarian snags at the BBQ!!!! :)

Sorry guys I made an error.

I was locked onto a solution for mass moment of inertia which is a solution in mm^4.

Basic rotating inertia is a quadratic with a solution in mm^2 but regardless the difference in the above example is 400mm^2 and 900mm^2 or 2.25 times the rotating inertia. So even with double the exhaust gas a larger turbo by 10mm is still going to exhibit a measurable lag response. Add to that tolerances will have to be greater in a larger turbo to account for inertial growth and life cycle creep.

who the fark invited you? :)

theory is all well and good, but sometimes it just dont work in real life

EDIT:- Im not saying that theory above dont work lol

What do you guys think of a RB25/30 with the GT35R and the small 0.63 ext ???

Too responsive for a sub 1000kg car ???

What's the point??? A GT35R (0.63) will produce similar results as a GT30R (0.82). I would personally go with the gt30r, with the 0.82 housing, as it would give a broader range of power. You may find that the 0.63 housing will choke the rb30, higher up in the rev range, causing the power to drop dramatically.

Even a GT35R (0.82) would be a great combo on a rb30det/t

theory is all well and good, but sometimes it just dont work in real life

EDIT:- Im not saying that theory above dont work lol

Then say nothing and appear wise grasshopper.

Usually only the uneducated cast doubt on the science and engineering, but hey, both are still booming industries.

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now



  • Similar Content

  • Latest Posts

    • (it is a brand new ported mellings pump) I suspect the lack of pressure is due to the leak. It was *not* that low in other logs of oil pressure in the past. It wasn't that hot either, but not far off.
    • Would a Mellings oil pump be a viable option  From my time with a LS, and talking to tuners and LS specialists, the "weak" OEM oil pump is one of the first things they recommend to swap out if I was going to give the engine any high RPM I opted for a Mellings high volume, with the high pressure springs and I never had a issue with it Cost wise they are not expensive in the scheme of things 
    • Just bought a 2002 Stagea 250tRS VR-X Four AERO VQ25DET and spent the last two weekends cleaning and detailing it.. still have to do the wheels and the engine bay but the rest of it came up nice. Imported 2011 to S.A. and I'm the third owner since it was imported. I met the guy who brought it over, he went to Japan and picked out the car, bought it and ordered the wheels. He also gave me a list of stuff he did to the car with receipts. Coil overs (I have the original springs), 3" exhaust from the dump pipe back no cat, Custom dump pipe,(I have the original exhaust), Plenum spacer, 18" custom Work XSA wheels (need restoring, I've made a start..), Shift kit put through the 5 speed tiptronic auto, TV and menus/screens changed to english, Australian DTV tuner installed in rear. I've just had four new discs and new pads as well as all the fluids including the brake fluid replaced. I have all the receipts for the last 15 years and the import papers in a nice folder. Car looks great, goes like hell but fuel economy is not a thing lol.. pics next..
    • I ended up in this rut again lol, and used a shit ton of filler. One thing I can't understand is, even after using a big long block and going in long X pattern strokes, I always end up at bare metal again with no filler, and my repair started at one end of the door and now I've chased my tail to almost the other end of the door. I was thinking of hitting the panel with a hammer where it might be a high spot and making everything low then filling it, I did this on a small section on my other door by mistake and I think I fixed it lol. Is this a bad idea? The other thing is with guidecoat, whether it's the powder or spray, after I sand all the guide coat off, it doesn't reveal anything for me in terms of high spots and low spots and makes it especially hard when it's bare metal (at least in powdered form), am I doing something wrong here, or likely a high spot I keep going over and creating valleys? Lastly, stupid question but, is it possible that after sanding if I only sand over the filler area where I know to be a dent that it's impossible for me to dig into that dent? Unless there are other problems which I missed.  
×
×
  • Create New...