Jump to content
SAU Community

Recommended Posts

I had my car tuned last week and it made 222rwkw max torque on the dyno sheet was 351.3 Nm so there is a rough idea...

Sounds a bit low? R34 GTT's put out about 360Nm in stock form, and I though when measuring power at the rear wheels torque figures dont really suffer from drivetrain loss? I would have thought at 222rwkw's it would have been putting out much more than that?

Link to comment
https://www.sau.com.au/forums/topic/154698-rb25det-torque/#findComment-2877472
Share on other sites

Who knows if my torque readout was correct or not but all that matters to me is that my car is hauling arse...

Your right though, when comparing my figure to others out there it does seem to be a bit low, on my dyno sheet though the graph doesnt show th Nm on the side it is just printed under the power figure..

Edited by WPN-O33
Link to comment
https://www.sau.com.au/forums/topic/154698-rb25det-torque/#findComment-2877809
Share on other sites

Who knows if my torque readout was correct or not but all that matters to me is that my car is hauling arse...

Your right though, when comparing my figure to others out there it does seem to be a bit low, on my dyno sheet though the graph doesnt show th Nm on the side it is just printed under the power figure..

If your cars hauling ass thats all that matter :laugh:

Link to comment
https://www.sau.com.au/forums/topic/154698-rb25det-torque/#findComment-2878013
Share on other sites

At the mid/high 200rwkw area mine makes ~440nm @ hubs when adjusted for final drive at 1bar.

looks like some dodgy figures here.

A few issues to consider, hub or roller etc. 900nm at the wheels is not right mate sorry to say. Toqrue is related to speed and power.

KW = Torque x RPM / 9549

some dynos require you to make some assumptions about the relationship between speed and RPM. If you have a manual transmission it is possible to correlate these pretty well but if you are running an automatic the results will have errors since the convertor slip changes with load and RPM.

Chassis dyno have the issue of tractive effort at the wheels. hub dyno will eliminaites inertia issues and measure torque "at the hub" consistantly (to get Flywheel torque simply divide the figure by the final drive ratio, often a number close to 4.1 for r33s)

The tractive effort is obtained by multiplying the torque by the total ratio of power train and dividing this sum by the rolling radius of the driving tyres.

I'm no guru...but it comes down to the setup..I guess many cbf setting it up properly dunno why. Also remember that peak power is not peak torque so when u calculate it..u get the power at the peak torque rpm.

When 270rwkw my gtst was putting out 440nm

All on a hub dyno.

Guss what...using the above formula...using my dyno sheet....at max torque my power calc. is the same. Amazing.

Link to comment
https://www.sau.com.au/forums/topic/154698-rb25det-torque/#findComment-2878159
Share on other sites

I've been very confused about torque readings as they dont seem to make any sense. 440Nm (which is not much at all) translates to a tractive foce of ~1370N. That's not much to move a ~1370kg car.

Power(W) = Torque(Nm) x Revs (rad/s), so I'm not exactly sure where you got your formula from. And the revolutions here is the speed of the wheels, not the engine (you're calculating torque at wheels, not engine)

Or have I been grossly misinformed about chassis dynos? The numbers that are given seem much more like engine torque figures than wheel torque figures. But for the dyno to work that out, it needs the rolling diameter of your tyre, diff ratio, and gear ratio. Even then it's a bit iffy as it's taken into account drivetrain losses, but there are no drivetrain losses at the flywheel.

Most of the people that I have talked to seem to think it's a lot like power and their one figure means everything. But torque changes depending on which gear you're in, eg. in an R32 1st gear has 3.321 times more torque than 4th gear.

If I am the one that's completely wrong, can someone please explain it to me. I'm going by mostly theory based engineering crap.

Link to comment
https://www.sau.com.au/forums/topic/154698-rb25det-torque/#findComment-2878393
Share on other sites

I've been very confused about torque readings as they dont seem to make any sense. 440Nm (which is not much at all) translates to a tractive foce of ~1370N. That's not much to move a ~1370kg car.

Power(W) = Torque(Nm) x Revs (rad/s), so I'm not exactly sure where you got your formula from. And the revolutions here is the speed of the wheels, not the engine (you're calculating torque at wheels, not engine)

Or have I been grossly misinformed about chassis dynos? The numbers that are given seem much more like engine torque figures than wheel torque figures. But for the dyno to work that out, it needs the rolling diameter of your tyre, diff ratio, and gear ratio. Even then it's a bit iffy as it's taken into account drivetrain losses, but there are no drivetrain losses at the flywheel.

Most of the people that I have talked to seem to think it's a lot like power and their one figure means everything. But torque changes depending on which gear you're in, eg. in an R32 1st gear has 3.321 times more torque than 4th gear.

If I am the one that's completely wrong, can someone please explain it to me. I'm going by mostly theory based engineering crap.

speed...RPM...blah its all maths and can easily be derived. RPM makes much more sense for ppl who are used to SI units...speed means not much to me on a dyno, but again its just calulated.

Horsepower is a measure of force in newtons/pounds against a distance in meters/feet for a time period of one second. The distance per second of a rotating object would be the circumference of an arbitrary arm connected to the object (=2.p.r) multiplied by the number of revolutions in one minute divided by 60 (seconds in a minute). And thus horsepower equals to: F.r.2.p.RPM/60 = T.2.p.RPM/60 = 550 lb.ft/s or 745.7 Nm/s

Hence the formula in English units for power is:

Power [HP] = T [ft.lb] . RPM / 5252

In SI units power is expressed in Watt = (T [Nm] . 2p . RPM/60) (1kW= Watt/1000)

Power [kW] = T [Nm] . RPM / 9549

Power [HP] = T [Nm] . RPM / 7121

kW x 1.341 = HP

This formula IS NOT MINE...use it and see for urself on ur dyno sheet.

As for the wheels and engine stuff?? lol where do u think RPM comes from? the engine on a chasis or hub dyno? lol Speed in KMPH can easily be calulated mate...its all maths. Dynos with KMPH confuse me personally.

As for the gear etc...your right. Will make a difference and needs to be factored in accodingly.

Btw 440nm on the hubs is a lot IMO stock r33 gtst is about 200 or something...what car are u driving a XR8 ute? Seems to move my car pretty fast...

Link to comment
https://www.sau.com.au/forums/topic/154698-rb25det-torque/#findComment-2878496
Share on other sites

Speed is more easily calculated than RPM of engine as you need to know diff ratio, gear ratio and rolling diameter to calculate RPM. All variables from car to car, where as speed is just measured off the speed of the rollers.

I'm still not seeing where you're getting the equation from. Power = torque x revs, with everything in SI units, i.e. Watts, Nm, and radians/sec.

Anyway, enough of that, lets look at an R32 (just cos I have the specs around). We'll assume the factory power and torque specs of 158kW and 245Nm.

Drive train losses in 4th are about 50-60kW, so we'll take 55kW. That equates to 103rwkW. i.e. 65% of the stock power.

Power is proportional to torque, so we will assume that at the wheels, 65% of the torque has made it there ignoring gear ratios. But 4th gear is 1:1 and diff ratio is 4.3:1 so we have to multiply these in.

Engine torque x percentage of power that makes it to wheels x 4th gear ratio x final gear ratio = Wheel torque.

So, 245 x 0.65 x 1 x 4.3 = 686.8

Therefore we have 686.8Nm at the wheels in dead stock form, much more than what you have in modified form.

I have an old dyno sheet where it shows the tractive effort. I had 169rwkW and 3900N. 3900N translates to 1250Nm. 440Nm translates to a tractive force of around 1370N, not much at all. If you look at other peoples dyno sheets that have tractive effort on them, they will be quite high. From that you can work backwards and get the wheels torque

I have confirmed my numbers with both this method and using the equation I stated at the start to get the same wheel torque figures.

Edited by salad
Link to comment
https://www.sau.com.au/forums/topic/154698-rb25det-torque/#findComment-2878550
Share on other sites

When i used to do dyno tuning, i did wonder about this, especially as there is two settings in the menu for it, (N)newtons and (Nm). Now i can understand how it can figure out the force(N) as tractive effort, as it is simply the torque to the retarder x radius roller. as for Nm, where is this torque at? because torque is measured about an axis, so are we talking axle torque, in which you would have to enter the wheel diameter, which you dont. I think tractive effort in newtons is more important, as the acceleration can be calculated from it. Anyway its the shape of the curve that is the most important thing.

Link to comment
https://www.sau.com.au/forums/topic/154698-rb25det-torque/#findComment-2878569
Share on other sites

Either way, the curves will be the same as you're multiplying by a constant, so I guess it's not important, but it's the numbers I've never understood.

I would love to know where the torque is measured, it's been confusing me for ages :miner:>_<

Link to comment
https://www.sau.com.au/forums/topic/154698-rb25det-torque/#findComment-2878574
Share on other sites

A few issues to consider, hub or roller etc. 900nm at the wheels is not right mate sorry to say. Toqrue is related to speed and power.

I'm no guru...but it comes down to the setup..I guess many cbf setting it up properly dunno why. Also remember that peak power is not peak torque so when u calculate it..u get the power at the peak torque rpm.

When 270rwkw my gtst was putting out 440nm

What the f**k? I never said 900nm, I said 440nm - my car is ALSO making 274rwkw @ hubs.... and I know all about the torque thing. There is nothing wrong with my dyno reading, to me it sounds very similar to yours to be honest.

Link to comment
https://www.sau.com.au/forums/topic/154698-rb25det-torque/#findComment-2878812
Share on other sites

Speed is more easily calculated than RPM of engine as you need to know diff ratio, gear ratio and rolling diameter to calculate RPM. All variables from car to car, where as speed is just measured off the speed of the rollers.

I'm still not seeing where you're getting the equation from. Power = torque x revs, with everything in SI units, i.e. Watts, Nm, and radians/sec.

Anyway, enough of that, lets look at an R32 (just cos I have the specs around). We'll assume the factory power and torque specs of 158kW and 245Nm.

Drive train losses in 4th are about 50-60kW, so we'll take 55kW. That equates to 103rwkW. i.e. 65% of the stock power.

Power is proportional to torque, so we will assume that at the wheels, 65% of the torque has made it there ignoring gear ratios. But 4th gear is 1:1 and diff ratio is 4.3:1 so we have to multiply these in.

Engine torque x percentage of power that makes it to wheels x 4th gear ratio x final gear ratio = Wheel torque.

So, 245 x 0.65 x 1 x 4.3 = 686.8

Therefore we have 686.8Nm at the wheels in dead stock form, much more than what you have in modified form.

I have an old dyno sheet where it shows the tractive effort. I had 169rwkW and 3900N. 3900N translates to 1250Nm. 440Nm translates to a tractive force of around 1370N, not much at all. If you look at other peoples dyno sheets that have tractive effort on them, they will be quite high. From that you can work backwards and get the wheels torque

I have confirmed my numbers with both this method and using the equation I stated at the start to get the same wheel torque figures.

LOL - I worked out what the deal is...I'm calulating Fly torque...as is calculated by thr power...I think u might have said this before, soz mate.

My formula holds...but to get Torque at the wheels multi by the final drive...in my case I think its 4.1 in 4th so lets say 440*4.1=1800Nm I wont include losses as the KW atw has already factored this in which was used to get the torque...seems a roudabout way to get there...but if u do need to, u can do as u did and use 30% as a guess.

I guess with a roller dyno u need to factor in the rolling radius of the tyres...I think u need to divided by 2.

Link to comment
https://www.sau.com.au/forums/topic/154698-rb25det-torque/#findComment-2878858
Share on other sites

What the f**k? I never said 900nm, I said 440nm - my car is ALSO making 274rwkw @ hubs.... and I know all about the torque thing. There is nothing wrong with my dyno reading, to me it sounds very similar to yours to be honest.

mate it wasnt about urs. Read all the posts and u will see its the dyno posted.

Either way...I think urs (and mine) is Calculated fly wheel torque as the long winded posts above explain...lol.

was fun, i learned something. so chill out.

Link to comment
https://www.sau.com.au/forums/topic/154698-rb25det-torque/#findComment-2878864
Share on other sites

there is no exact way to get a deadly accurate engine torque reading on a chassis dyno.

there is heaps of torque multiplication happening on the chassis dyno, which is why many owners get excited when their midly tuned rb25 shows over 800nm at the bak wheels. this is coz the crankshaft torque is been multiplied by the gearbox ratio, diff ratio and tyre size.

Link to comment
https://www.sau.com.au/forums/topic/154698-rb25det-torque/#findComment-2878906
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now


  • Similar Content

  • Latest Posts

    • Actually, that's not entirely true. It's also the same motor in the 1st gen Nissan Cube but they're rare as hen's teeth.  
    • Yeah it is always worth testing and balancing actuators out of the box, just set the pressure regulator on a compressor very low (eg 5 psi) and increase it slowly to see when they both move.....unfortunately while you may be able to adjust the length of the actuator rod to minimise any difference, the actual pressure they move from is not adjustable so you need a well matched pair. And yes, the VCAM is probably contributing; the earlier in the rev range they come on boost and the slower the revs build (I think your demo was in 5th), the more you notice it.  Driving at WOT through 1st, 2nd, 3rd etc you will probably never hear it as any shuffling starts and is over super quickly
    • oh they were with that motor, you need to remove the engine to change the spark plugs (don't have to, but it does make it easier)
    • I certainly fall into the annoyed camp, but glad to hear that if it's happening at low boost then I'm not likely going to blow a turbo and end up with metal shards in my oil. Just feels like it prevents me from really driving it without hesitation and "peak" performance. Wonder if it's the VCAM, it did an impressive job of shifting the torque curve and faster spool, but maybe now it's "too fast" and there's too much air for how open the throttle is.  Based on some other threads, will also do some reading on synchronizing the actuators. They are the default actuators that come on the Garrett's and I would think they would be set the same coming from the factory, but if the turbos don't actually work exactly the same way at the same time as previously mentioned, it would be worth making sure the actuators are actuating together properly
    • I went down this rabbit hole before, ended up sourcing a motor from the UK (I'm in Japan) which also didn't function correctly. With the original motor, I disassembled it and reassembled it and it works somewhat, sometimes. What I could deduce from all my screwing around is that there is calibration of the gears on the inside of the motor and two ramps on the main gear which activate switches that operate the motor and move the sunroof either to retract into the roof or tilt. Where I got stuck was that, it seemed in my case that one or both of the switches that are activated by the ramp on the gear did not always activate and thus the motor did not move, causing it to sometimes not retract or tilt (apologies, I've forgotten which way it didn't work.).  Of course this part is discontinued at Nissan now, it's the same part in the S15 but no other models. I also contacted the manufacturer of the component for schematics - forgot the name, they're based in Gifu - but they declined to share the information due to being bound by an NDA, sadly. Looking through my pictures now, it seems I last had a crack at this in 2022. See, I so kindly wrote "open" and "close" next to the switches. If you figure it out, please do tell me. Those little switches, with the red buttons may need to be replaced.
×
×
  • Create New...