Jump to content
SAU Community

Recommended Posts

Just wondering if anyone has had practical experience with injectors and rwkw.

Can you use a linear relationship to determine the approx duty cycle as you raise the boost and make more power.

e.g. If you are seeing 70% inj duty ~ 170rwkw

If linear then at 90% inj duty should be ~ 218rwkw (based on quick calc)

And I guess 90% is about the most you want to push it..

Question: I'm going to keep my stock injectors so would I be safer to

1. Just tune till these get close to 90% and live with that (Would that be around the 220rwkw..).

Or

2. Would I be best to increase the Fuel pressure slightly so that the inj duty max 85%?

I really want to get about 220rwkw which will be about a 27% increase in power. I realise I should renew some of the hose to do this..

P.s. I'm going to be putting in a gtr pump to ensure the pump isn't limiting things..

The R34 in HPI got to 90% @225rwkw

http://www.whiteline.com.au/default.asp?page=/reviews02.htm

Edited by benl1981
Link to comment
https://www.sau.com.au/forums/topic/158253-fuel-injector-duty-cycle-vs-rwkw/
Share on other sites

  • Replies 45
  • Created
  • Last Reply

Top Posters In This Topic

Top Posters In This Topic

Posted Images

there is no way you can get a relationship between injector duty and rwkw. thats just silly. every car is different. different pump conditions different fuel line different engine condition / turbo condition / intercooler setup / head setup and the list goes on.

run the fuel pressure at 46psi and use the injector duty up to around 95% absolute maximum which should see between 210rwkw to 230rwkw

Its on the same car though...so I thought you may be able to compare..

Provided the fuel pump etc can hold the pressure.

Yeah - Ill probably get a Nismo FPR and set it about 8 or 10psi above stock pressure. Does anyone know what stock fuel filters are rated at? I.e. how many psi ..because 46psi + 15psi (for boost) = 61psi max fuel pressure

See how we go.

Cheers

Im sorry, i would have to disagree with most of you, injector size is definately proportional to horsepower assuming the same AFR and duty cycle. A ported head or bigger turbo will make more horsepower and require bigger injectors. A car making 500rwkw will need double the fuel(approximately) than that of a 250rwkw car. There is a simple calculation of what duty cycle and fuel pressure will support a given hp with a certain set of injectors, i just cant remember where the formula is.

100% injector duty eek!!!.. hope you got the $$$ ready for a engine rebuild.

lol it's the first time I found the magical 100% I was told there's only 2 or 3 places in the mapping where it reaches it. normally it don't go above 90% but i do drive it fairly suttly at the moment, but these things happen when your showing of to someone :P

Anyway to clear it all up a little better, a better way of working out how much power your injectors will support isn't to look at the duty cycle so much but to look at the actual ability of the injectors to supply fuel. Generally it is more widley accepted with a 2.5-3L ish 6 that for ever 1cc of injectorage you'll get 1hp at the crank, so if your running 600cc injectors they'll safely support 600hp at the engine. If you relate this to my pic above for example, 440cc GTR injectors are supporting 415HP at the wheels but on very high injector duty which is bad. As I always say if you want more power, dun be a tightass just get bigger injectors they ain't expensive....

Exactly, so 370cc injectors at standard fuel pressure have the ability to make 370hp(its actually a bit less)so 360hp, which equates to about 220-230rwkw safely, as has been proved a number of times. Hope that answers a the question.

Most places I've spoken to, and sized up, have managed to work out the correct inj size, and they don't like to run over 80% DC at all!

They leave 20% for spiking etc, and for other necesities, and since using up to 80%, it makes it easier to tune (Rather then a car that only uses say 40%)

HP is almost directly proportional to fuel consumption (BSFC - Brake specific fuel consumption) in spark ignition engines if the same AFR is to be used. What you've got to remeber is that dynamic flow rates and static flow rates from injector to injector are quite different. Most Japanese injectors are expotential flow - meaning their flow rates with low duty clcyes may be far less than their flow rates at high DC ie its not linear.

Aslo accelleration enrichment in 90% of cases wont effect peak DC as once full thorttle is seen there is no more correction.

Don't forget the affect of acceleration enrichment.

;) cheers :wave:

This is the case with my car. If i dont let it warm up it will hit 100%. But after this

it only ever see's no more than 90% duty cycle. The car is a R33 GTST using the

stock injectors with a nismo FPR and is making 260RWKW. It's not a happy dyno

as i first thought because the car was run on there dyno when it was 160kw and

was run on two different dyno's in the space of 3 months and between all three

it varied 1kw.

This is the case with my car. If i dont let it warm up it will hit 100%. But after this

it only ever see's no more than 90% duty cycle. The car is a R33 GTST using the

stock injectors with a nismo FPR and is making 260RWKW. It's not a happy dyno

as i first thought because the car was run on there dyno when it was 160kw and

was run on two different dyno's in the space of 3 months and between all three

it varied 1kw.

Thats coolant correction not acceleration enrichment.

lol it's the first time I found the magical 100% I was told there's only 2 or 3 places in the mapping where it reaches it. normally it don't go above 90% but i do drive it fairly suttly at the moment, but these things happen when your showing of to someone ;)

When I was running stock injectors once it hit 100% it stayed there and fuel requirements only increased as rpm did so even if it wasn't making more power. Mine hit 100% duty at around 5200rpm at WOT from memory.

ECU puts more fuel in when cold because the cylinders are cold. What happens is some of the fuel when sprayed in, condenses on the inside of the chamber leaving less available for burning. The ecu knows about this so puts more fuel in when the engine is cold to compensate. It assumes cylinder temps based on water temps.

It's just trying to keep the AFR's where they normally are when the engine is wamed up.

Also has anyone watched a dyno run when the injectors hit 100%? It actually goes rich. I'm told this is because they have given up all pretense at opening and closing and just stay open all the time. This means that much more fuel is put in at 100% compared to 99% than is put in aat 99% compared to 98%.

Also has anyone watched a dyno run when the injectors hit 100%? It actually goes rich. I'm told this is because they have given up all pretense at opening and closing and just stay open all the time. This means that much more fuel is put in at 100% compared to 99% than is put in aat 99% compared to 98%.

Never seen that before. Most injectors flow about the same between around 97-100% Duty cycle. Usually you can tell your out of injectors as the AFR will enlean linerarly at 45deg angle.

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now



  • Similar Content

  • Latest Posts

    • See if you can thermal epoxy a heatsink or two onto it?
    • The other problem was one of those "oh shit we are going to die moments". Basically the high spec Q50s have a full electric steering rack, and the povo ones had a regular hydraulic rack with an electric pump.  So couple of laps into session 5 as I came into turn 2 (big run off now, happily), the dash turned into a christmas tree and the steering became super heavy and I went well off. I assumed it was a tyre failure so limped to the pits, but everything was OK. But....the master warning light was still on so I checked the DTCs and saw – C13E6 “Heat Protection”. Yes, that bloody steering rack computer sitting where the oil cooler should be has its own sensors and error logic, and decided I was using the steering wheel too much. I really appreciated the helpful information in the manual (my bold) POSSIBLE CAUSE • Continuing the overloading steering (Sports driving in the circuit etc,) “DATA MONITOR” >> “C/M TEMPERATURE”. The rise of steering force motor internal temperature caused the protection function to operate. This is not a system malfunction. INSPECTION END So, basically the electric motor in the steering rack got to 150c, and it decided to shut down without warning for my safety. Didn't feel safe. Short term I'll see if I can duct some air to that motor (the engine bay is sealed pretty tight). Long term, depending on how often this happens, I'll look into swapping the povo spec electric/hydraulic rack in. While the rack should be fine the power supply to the pump will be a pain and might be best to deal with it when I add a PDM.
    • And finally, 2 problems I really need to sort.  Firstly as Matt said the auto trans is not happy as it gets hot - I couldn't log the temps but the gauge showed 90o. On the first day I took it out back in Feb, because the coolant was getting hot I never got to any auto trans issues; but on this day by late session 3 and then really clearly in 4 and 5 as it got hotter it just would not shift up. You can hear the issue really clearly at 12:55 and 16:20 on the vid. So the good news is, literally this week Ecutek finally released tuning for the jatco 7 speed. I'll have a chat to Racebox and see what they can do electrically to keep it cooler and to get the gears, if anything. That will likely take some R&D and can only really happen on track as it never gets even warm with road use. I've also picked up some eye wateringly expensive Redline D6 ATF to try, it had the highest viscosity I could find at 100o so we will see if that helps (just waiting for some oil pan gaskets so I can change it properly). If neither of those work I need to remove the coolant/trans interwarmer and the radiator cooler and go to an external cooler....somewhere.....(goodbye washer reservoir?), and if that fails give up on this mad idea and wait for Nissan to release the manual 400R
    • So, what else.... Power. I don't know what it is making because I haven't done a post tune dyno run yet; I will when I get a chance. It was 240rwkw dead stock. Conclusion from the day....it does not need a single kw more until I sort some other stuff. It comes on so hard that I could hear the twin N1 turbos on the R32 crying, and I just can't use what it has around a tight track with the current setup. Brakes. They are perfect. Hit them hard all day and they never felt like having an issue; you can see in the video we were making ground on much lighter cars on better tyres under brakes. They are standard (red sport) calipers, standard size discs in DBA5000 2 piece, Winmax pads and Motul RBF600 fluid, all from Matty at Racebrakes Sydney. Keeping in mind the car is more powerful than my R32 and weighs 1780, he clearly knows his shit. Suspension. This is one of the first areas I need to change. It has electronically controlled dampers from factory, but everything is just way too soft for track work even on the hardest setting (it is nice when hustling on country roads though). In particular it rolls into oversteer mid corner and pitches too much under hard braking so it becomes unstable eg in the turn 1 kink I need to brake early, turn through the kink then brake again so I don't pirouette like an AE86. I need to get some decent shocks with matched springs and sway bars ASAP, even if it is just a v1 setup until I work out a proper race/rally setup later. Tyres. I am running Yoko A052 in 235/45/18 all round, because that was what I could get in approximately the right height on wheels I had in the shed (Rays/Nismo 18x8 off the old Leaf actually!). As track tyres they are pretty poor; I note GTSBoy recently posted a porker comparo video including them where they were about the same as AD09.....that is nothing like a top line track tyre. I'll start getting that sorted but realistically I should get proper sized wheels first (likely 9.5 +38 front and 11 +55 at the rear, so a custom order, and I can't rotate them like the R32), then work out what the best tyre option is. BTW on that, Targa Tas had gone to road tyres instead of semi slicks now so that is a whole other world of choices to sort. Diff. This is the other thing that urgently needs to be addressed. It left massive 1s out of the fish hook all day, even when I was trying not too (you can also hear it reving on the video, and see the RPM rising too fast compared to speed in the data). It has an open diff that Infiniti optimistically called a B-LSD for "Brake Limited Slip Diff". It does good straight line standing start 11s but it is woeful on the track. Nismo seem to make a 2 way for it.
    • Also, I logged some data from the ECU for each session (mostly oil pressures and various temps, but also speed, revs etc, can't believe I forgot accelerator position). The Ecutek data loads nicely to datazap, I got good data from sessions 2, 3 and 4: https://datazap.me/u/duncanhandleyhgeconsultingcomau/250813-wakefield-session-2?log=0&data=7 https://datazap.me/u/duncanhandleyhgeconsultingcomau/250813-wakefield-session-3?log=0&data=6 https://datazap.me/u/duncanhandleyhgeconsultingcomau/250813-wakefield-session-4?log=0&data=6 Each session is cut into 3 files but loaded together, you can change between them in the top left. As the test sessions are mostly about the car, not me, I basically start by checking the oil pressure (good, or at least consistent all day). These have an electrically controlled oil pump which targets 25psi(!) at low load and 50 at high. I'm running a much thicker oil than recommended by nissan (they said 0w20, I'm running 10w40) so its a little higher. The main thing is that it doesn't drop too far, eg in the long left hand fish hook, or under brakes so I know I'm not getting oil surge. Good start. Then Oil and Coolant temp, plus intercooler and intake temps, like this: Keeping in mind ambient was about 5o at session 2, I'd say the oil temp is good. The coolant temp as OK but a big worry for hot days (it was getting to 110 back in Feb when it was 35o) so I need to keep addressing that. The water to air intercooler is working totally backwards where we get 5o air in the intake, squish/warm it in the turbos (unknown temp) then run it through the intercoolers which are say 65o max in this case, then the result is 20o air into the engine......the day was too atypical to draw a conclusion on that I think, in the united states of freedom they do a lot of upsizing the intercooler and heat exchanger cores to get those temps down but they were OK this time. The other interesting (but not concerning) part for me was the turbo speed vs boost graph: I circled an example from the main straight. With the tune boost peaks at around 18psi but it deliberately drops to about 14psi at redline because the turbos are tiny - they choke at high revs and just create more heat than power if you run them hard all the way. But you can also see the turbo speed at the same time; it raises from about 180,000rpm to 210,000rpm which the boost falls....imagine the turbine speed if they held 18psi to redline. The wastegates are electrically controlled so there is a heap of logic about boost target, actual boost, delta etc etc but it all seems to work well
×
×
  • Create New...