Jump to content
SAU Community

Recommended Posts

The real problem here is that no one has called Nissan to inform them of their design flaw.

They clearly over spent on the much more expensive 2 piece design when they could have saved all that money making 1 piece shafts.

Forget engineering rules. This is obviously an oversight on their behalf. Someone should notify them

I asked these questions when it was made!

I picked up a 2 piece yesterday, gutting thing is I’ll need a second driveshaft loop and it certified!

I’m not keen on a high speed moment with the tailshaft doing some dub step death vibration

I’ll get onto Nissan and tell them to stop wasting time and money on the tailshaft and put it into forging the engine :domokun:

I asked these questions when it was made!

I picked up a 2 piece yesterday, gutting thing is I’ll need a second driveshaft loop and it certified!

I’m not keen on a high speed moment with the tailshaft doing some dub step death vibration

I’ll get onto Nissan and tell them to stop wasting time and money on the tailshaft and put it into forging the engine :domokun:

If you aren't having a problem with the shaft you have, why change it?

You will feel a vibration before anything worse happens.

It also depends on the material it's made from and how it was made (which is explained in detail in this thread).

If your shaft maker has made it from the correct material for the length and diameter then it might be perfectly fine

Remember that the critical speed is tailshaft speed, which you will only reach when you have very high road speed. 6000+ rpm at the tailshaft is fairly hiking, and is not going to happen on the road very often, and not happen on many racetracks for long either. That said, on a racecar, that will do that speed maybe once or twice every lap....you'll eventually have a bad moment, and that bad moment will upwards of 200km/hm, which you won't like. So, not a risk worth taking on a race car, and strangely enough, probably perfectly fine on a road car.

That said, I like the 2 piece design. Engineering wise it is much smarter, and does a better job of separating any movement of gearbag relative to diff from each other - not that it matters so much in an IRS car.

But for my overall preference, the only engineers who have ever really showed an interest in doing it properly are those from Peugot and Porsche (and a few others) who used a torque tube. I can remember reading that the solid driveshaft up the centre of the torque tube on a 928 was capable of absorbing something like 7 or 11 complete twists as it loaded up on launch with a 500+ HP engine in a race car. That is some serious business.

Steel does not have a fatigue life, it has a fatigue limit and as long as it is operated at a stress level below this then it should last for an unlimited no. of cycles.

Remember that the critical speed is tailshaft speed, which you will only reach when you have very high road speed. 6000+ rpm at the tailshaft is fairly hiking, and is not going to happen on the road very often, and not happen on many racetracks for long either. That said, on a racecar, that will do that speed maybe once or twice every lap....you'll eventually have a bad moment, and that bad moment will upwards of 200km/hm, which you won't like. So, not a risk worth taking on a race car, and strangely enough, probably perfectly fine on a road car.

That said, I like the 2 piece design. Engineering wise it is much smarter, and does a better job of separating any movement of gearbag relative to diff from each other - not that it matters so much in an IRS car.

But for my overall preference, the only engineers who have ever really showed an interest in doing it properly are those from Peugot and Porsche (and a few others) who used a torque tube. I can remember reading that the solid driveshaft up the centre of the torque tube on a 928 was capable of absorbing something like 7 or 11 complete twists as it loaded up on launch with a 500+ HP engine in a race car. That is some serious business.

6000 tail shaft rpm is the same as 6000 crankshaft rpm in 4th gear.

That's 111km/hr I'm pretty sure.

i think 4th at 6000 is around 165 ish km/h (with 4.3 diff)

Yeah my bad. I'm using an imperial calculator and that's MPH not KM/H.

So with a 4.11:1 it's 178km/h at 6000rpm on a 235/45/17 and 170km/h on a 4.3:1

Got my tailshaft today, I opted for the biggest unis I could get, they built the entire shaft using my old centre plates, and my sliding spline drive. Made everything else, heavier tube, 90x30 uni's that are solid, no grease galleries. The bloke at hardie spicer said it'll handle 1000 odd hp, and massive tourque, so I should never break this one!

I did have to flare the end of gearbox cover/shield to allow the uni to clear.

Best bit, replacable uni's!!!!

If anyone wants better photos of details etc just ask..

post-80095-0-65041300-1347274507_thumb.jpg

post-80095-0-09720100-1347274551_thumb.jpg

post-80095-0-95989600-1347274574_thumb.jpg

post-80095-0-10525700-1347274645_thumb.jpg

post-80095-0-11672800-1347274667_thumb.jpg

Got my tailshaft today, I opted for the biggest unis I could get, they built the entire shaft using my old centre plates, and my sliding spline drive. Made everything else, heavier tube, 90x30 uni's that are solid, no grease galleries. The bloke at hardie spicer said it'll handle 1000 odd hp, and massive tourque, so I should never break this one!

I did have to flare the end of gearbox cover/shield to allow the uni to clear.

Best bit, replacable uni's!!!!

If anyone wants better photos of details etc just ask..

That shield can be knocked out quite easily if you have trouble with it fouling. It's a dust guard for the rear seal so can be ditched with only minor ramifications.

That shield can be knocked out quite easily if you have trouble with it fouling. It's a dust guard for the rear seal so can be ditched with only minor ramifications.

Yeah I popped it out to flare it a little, id like to keep it on, but if it gets in the way still, ill machine up a s/s one the right size ;)

This is what happens to a single piece tailshaft at 8,300RPM. Its in an AE86 so the tailshaft isn't exactly all that long either. Guy had a tailshaft loop as well, it ripped it clean out, took half the gearbox out with it along with the shifter and the fuel lines. Punched 4x big holes in the floor.

There is another guy here in SA that had a Cefiro. Freshly built car, new very expensive engine, clutch, gearbox etc etc.

Tailshaft failed in 4th gear when he attempted his scando into turn one at Mallala. The shock was so severe to the car that it the car actually buckled, destroyed the gearbox and engine. Car was pretty much gone because of a failed tailshaft.

I for one, will not be putting my single piece shaft back in.

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now



  • Similar Content

  • Latest Posts

    • Can u check this way it works for power supply?
    • These coils draw 10amps that what i read online
    • I appreciate the detailed explanation, think I understand now. I spent the better part of last night reading what I could about shuffle and potential solutions. I had replaced the OEM twin turbo pipe with an alternate Y pipe that is separated further away from the turbo. The current one is from HKS and I had a previous pipe that was separated even further away, both have shuffle. I had heard that a divider can be welded in to the OEM pipe to remove turbulence, and figure that aftermarket pipes that are more separated would achieve the same thing. From what I read, most people with -10 turbos get shuffle due to their size, though it's a bit less common with -5s on a standard RB26. I think Nismoid mentioned somewhere it's because OEM recirculation piping is common in Australia with -5 cars. It seems that the recommendation tends to vary between a few options, which I've ordered in what I think is most feasible for me:  1. Retune the MAP or boost controller to try to eliminate shuffle 2. Install OEM recirculation piping 3. Something called a 'balance pipe' welded onto the exhaust manifolds. I don't know if kits for this are available, seems like pure fabrication work 4. simply go single turbo My current layout is as follows: Garrett 2860 -5s HKS Racing Suction intake MAF delete pipes HKS racing chamber intake piping hard intercooler piping,  ARC intercooler HKS SSQV BOV and pipe Haltech 2500 elite ECU and boost solenoid/controller HPI dump pipes OEM exhaust manifolds HKS VCAM step 1 and supporting head modifications Built 2.6 bottom end All OEM recirculation piping was removed, relevant areas sealed off I'll keep an eye out for any alternative solutions but can get started with this.  Only other question is, does shuffle harm the turbo (or anything else)? It seems like some people say your turbo shafts will explode because of the opposing forces after a while and others say they just live with it and adjust their pedal foot accordingly. 
    • That worked out PERFECTLY! Thank you big time to JJ. He was able to swap me his stock diff. He drove all the way to me as well. Killer! Removal & install was pretty straightforward. The diff itself is HEAVY. So that’s a 2 man job.  Man does the car drive nice now! Couldn’t have worked out any better 👌
×
×
  • Create New...