Jump to content
SAU Community

Recommended Posts

I dont think it would handle the heat. Unless it was purpose made to suit with bigger rotor clearances and whatnot. Other then that I cant see why it wouldnt work, so long as you can overcome the engineering difficulties in fitting it and setting up the drive for it.

But anything is possible with enough time and money!

  • Replies 65
  • Created
  • Last Reply

Top Posters In This Topic

Not quite sure how to word it, but...

Rolls, people are negative, such is life. I honestly though I came up with the idea for sequential turbo's, posted, and of course it'd already been done. You can only learn from asking, and some are better less negative/harsh teachers than others. I've asked much stupider things and learnt from my mistakes, but am better off/smarter from doing so.

Yeah I wasn't actually proposing anyone build this, was more just interested in what effect creating negative backpressure would have on an engine and how much energy would be required to do so.

It is always interesting to discuss things like this as they enhance your understanding of how it all works and keep you thinking.

Negative posts that don't even raise any points about the idea serve to just discourage people from thinking about new ideas, in reality the more people you think actively thinking about things like this higher the chance someone will come up with an actual working idea that can benefit people.

Mafia seems to really like posts like this, hell even when people are asking genuine questions (like differences between neo and s1/2 rb25) he posts bullshit like that.

I thought up an idea a while ago of a large tank (say 5 litres) hidden somewhere that stores vacuum under idle/cruise etc, then switches a solenoid at WOT to lower the dump/front pipe pressures for a split second to try help spool a turbo quicker. Don't know if it'd work, but thought it was interesting..

I like the idea of energy storage, much like the KERS system they are using in F1 and other hybrid energy drives. Would definitely be interested in how effective something like this would be as well. Another option would be to use compressed air stored up from braking etc and then using this to pre-spool the turbo when getting on the throttle.

Seriously though, if your exhaust is flowing enough, it should have no issues getting rid of the gasses.

Of course it should have no issues getting rid of it, but it would help get rid of them better. If you reduce backpressure you help exhaust flow, more exhaust flow increases scavenging and helps get more air into cylinders. You can see this effect when going to a bigger hot side, you make far more power for the same boost as you have just opened up the exhaust side of the car much more. If you were to attempt to achieve the same thing via sucking the exhaust out, you could have the gains of going to a larger hot side but whilst retaining the response of a smaller hot side.

It all just comes down to how much energy is required to do so, eg if it is more or less than you would gain by reducing the back pressure. if it is less then you have a net gain, eg you make more power, if it is more then you will loose power.

Get what I mean?

I dont think it would handle the heat. Unless it was purpose made to suit with bigger rotor clearances and whatnot. Other then that I cant see why it wouldnt work, so long as you can overcome the engineering difficulties in fitting it and setting up the drive for it.

But anything is possible with enough time and money!

I agree that heat would certainly be an issue, but what if you use a centrifugal design, eg like the compressor on a turbo, there is only one moving part so tolerances are not as big an issue (just look at the rear end of a turbo, they work fine).

Edited by Rolls

I love outside the box thinking. if no 1 ever had crazy idea's we would still be on horseback.

But from what I can think of it would be just too big and over complicated unless it was on some form of stationary motor like a big genset. I think you would be better off running a bigger dump and modding the turbine housing with a CO2 jet plumbed up to it so that it pre spools the turbo. Sort of like how RIP'S has his drag car.

On the subject of new ideas... We all love the toyota prius now don't we blokes?! We all love formula one too. Both the prius and f1 cars use braking energy and convert it into acceleration energy. Here is my idea. If we swapped our braking system with "air compressor brakes" then we could pump up an air tank and use the gas to spool the turbo quicker. I'm sure there would be easier ways to pump up a tank to help spool the turbo but why not use braking energy. It gets wasted anyway... :merli:

On the subject of new ideas... We all love the toyota prius now don't we blokes?! We all love formula one too. Both the prius and f1 cars use braking energy and convert it into acceleration energy. Here is my idea. If we swapped our braking system with "air compressor brakes" then we could pump up an air tank and use the gas to spool the turbo quicker. I'm sure there would be easier ways to pump up a tank to help spool the turbo but why not use braking energy. It gets wasted anyway... :merli:

Have the car fitted with an air tank for storing 100 litres of air at 300psi, then have nozzles in the intake and at the lights with closed throttle unleash 100litres of air into the intake on take off. Instant boost! Then pull up in your nearest petrol station and fill it up again! FREE!

Have the car fitted with an air tank for storing 100 litres of air at 300psi, then have nozzles in the intake and at the lights with closed throttle unleash 100litres of air into the intake on take off. Instant boost! Then pull up in your nearest petrol station and fill it up again! FREE!

MONORAIL....MONORAIL....MONORAIL, What's that word ? MONORAIL !

Have the car fitted with an air tank for storing 100 litres of air at 300psi, then have nozzles in the intake and at the lights with closed throttle unleash 100litres of air into the intake on take off. Instant boost! Then pull up in your nearest petrol station and fill it up again! FREE!

Assuming the BOV opens up when you do this would probably be a very effective pre spool!

I just wanted to come in here and say that the idea isn't worth pursuing. It's not quite up there with tailpipes with louvres in to cause the outside air to flow through and "suck" the exhaust gas out, but it's still attacking the problem from the wrong end.

Here's why. The turbo is a bloody great obstruction in the exhaust. Quite deliberately so. Sure, reducing the downstream pressure will enhance the spool behaviour and all the other little aspects of turbo performance that we'd like to enhance, but really, when you get right down to it, a decently free flowing exhaust, sized to suit the power level and hence total gas flow rate of the engine, does not put up much back pressure on a turbine. A couple of psi** at the max. Now, if you could drive a pump of some sort to pull that small backpressure down to say zero, then it will help, sure. But, I'm pretty sure that if you spent the same amount of power (be it electrical via the alternator or be it mechanical via a supercharger or be it just by running the turbo harder and putting a bit more backpressure on the exhaust ports, so as to create some more compressed air that you can burn fuel with, then you will make more power.

As has been written by others above, twin charging will give you exactly what you are after - reduced exhaust manifold pressure though being able to use a larger turbine housing as well as more low rpm boost and total power. This all achieved with a blower that is easier to package than whatever you would have to do to put it in the exhaust stream, and just handling clean cold air instead of nasty, hot exhaust gases. Alternatively, as some OEMs are working on, you can use an electric motor on the same shaft as the turbo to spin it up to speed prior to the exhaust flow becoming large enough to do it. Gets you some of the same benefits - if you upsize the turbine housing and rely on the electric motor to get it spooling then you get more power and better cylinder fill, etc etc.

In vehicle compressors for hybrid drive systems are in use in bigger vehicles. Trucks and buses. Not really feasible in cars, especially performance cars because of the mass of the receiver. You have to remember that in our cars and and trucks and buses, we're talking about the same sorts of power levels - 350 to 500HP engines. But in trucks and buses we've got multi tonne masses being pulled around, so adding a few extra hundred kilos for the compressor and storage is not as big a penalty as in a 1500kg car.

** I don't want to hear about cars with 4 and 5 psi of measured backpressure. I don't care if your exhaust is not big enough. The fact remains that it is quite possible to put a big enough exhaust on to bring the backpressure down to something reasonable.

I just wanted to come in here and say that the idea isn't worth pursuing. It's not quite up there with tailpipes with louvres in to cause the outside air to flow through and "suck" the exhaust gas out, but it's still attacking the problem from the wrong end.

No doubt, I just want to know what will happen.

Now, if you could drive a pump of some sort to pull that small backpressure down to say zero, then it will help, sure.

I'm not talking about taking it down to zero, I'm talking about taking it down to say -20mmhg or greater, eg creating a vacuum and literally sucking the exhaust out, not making it zero restriction, creating the opposite of a restriction.

I'm not talking about taking it down to zero, I'm talking about taking it down to say -20mmhg or greater, eg creating a vacuum and literally sucking the exhaust out, not making it zero restriction, creating the opposite of a restriction.

Doesn't matter. You'd still spend your energy doing that when it would be better spent at the other end. You can get much more from compressing some air and intercooling it than you can from stretching it out into a vacuum. Also, going to negative pressure, even a little bit, makes the gas volume larger, velocity in the pipe larger and so you need an even bigger exhaust system in order to stop pressure drop from clawing back some of your gains.

Have the car fitted with an air tank for storing 100 litres of air at 300psi, then have nozzles in the intake and at the lights with closed throttle unleash 100litres of air into the intake on take off. Instant boost! Then pull up in your nearest petrol station and fill it up again! FREE!

Injecting that much air would send your AFR's a bit mental, plus you have to match that with fuel and it won't actually spool the turbo instantly

EDIT: actually thinking about this. If you inject air after the turbo it may want to turn the turbo backwards (maybe), and if it is injected before turbo, your gonna lose most of it out of the filter

Holset (from memory) were researching and developing an "E-Boost" that used a small electric motor to help the turbo accelerate from low RPM or something like that. Saw this a while ago so don't remember much but this is a much better idea. Still I can't really justify it on an RB. As had been said. You would lose alot of the energy ou are "gaining" with powering whatever you end up using

A KERS type system is what I'd have to say would be the closest to using an energy sorce to help acceleration, but the weight/complexity of such a unit on an older car would make it kinda useless, especially when you have to recharge it. On new cars where it can be built in, yeah but I sorta don't see the point unless it's used for taking off/getting up to speed rather then an actual speed boost

Edited by 89CAL

Has anyone else here heard about (I think it's VW)'s regenerative braking experiments using a flywheel that spins up on braking, then returns the power to the wheels under acceleration?

Has anyone else here heard about (I think it's VW)'s regenerative braking experiments using a flywheel that spins up on braking, then returns the power to the wheels under acceleration?

Porsche have done it and so have many other companies, it can be quite effective.

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now



  • Similar Content

  • Latest Posts

    • Next on the to-do list was an oil and filter change. Nothing exciting to add here except the oil filter is in a really stupid place (facing the engine mount/subframe/steering rack). GReddy do a relocation kit which puts it towards the gearbox, I would have preferred towards the front but there's obviously a lot more stuff there. Something I'll have to look at for the next service perhaps. First time using Valvoline oil, although I can't see it being any different to most other brands Nice... The oil filter location... At least the subframe wont rust any time soon I picked up a genuine fuel filter, this is part of the fuel pump assembly inside the fuel tank. Access can be found underneath the rear seat, you'll see this triangular cover Remove the 3x plastic 10mm nuts and lift the cover up, pushing the rubber grommet through The yellow fuel line clips push out in opposite directions, remove these completely. The two moulded fuel lines can now pull upwards to disconnect, along with the wire electrical plug. There's 8x 8mm bolts that secure the black retaining ring. The fuel pump assembly is now ready to lift out. Be mindful of the fuel hose on the side, the hose clamp on mine was catching the hose preventing it from lifting up The fuel pump/filter has an upper and lower section held on by 4 pressure clips. These did take a little bit of force, it sounded like the plastic tabs were going to break but they didn't (don't worry!) The lower section helps mount the fuel pump, there's a circular rubber gasket/grommet/seal thing on the bottom where the sock is. Undo the hose clip on the short fuel hose on the side to disconnect it from the 3 way distribution pipe to be able to lift the upper half away. Don't forget to unplug the fuel pump too! There's a few rubber O rings that will need transferring to the new filter housing, I show these in the video at the bottom of this write up. Reassembly is the reverse Here's a photo of the new filter installed, you'll be able to see where the tabs are more clearing against the yellow OEM plastic Once the assembly is re-installed, I turned the engine over a few times to help build up fuel pressure. I did panic when the car stopped turning over but I could hear the fuel pump making a noise. It eventually started and has been fine since. Found my 'lucky' coin underneath the rear seat too The Youtube video can be seen here: https://www.youtube.com/watch?v=uLJ65pmQt44&t=6s
    • It was picked up on the MOT/Inspection that the offside front wheel bearing had excessive play along with the ball joint. It made sense to do both sides so I sourced a pair of spare IS200 hubs to do the swap. Unfortunately I don't have any photos of the strip down but here's a quick run down. On the back of the hub is a large circular dust cover, using a flat head screw driver and a mallet I prised it off. Underneath will reveal a 32mm hub nut (impact gun recommended). With the hub nut removed the ABS ring can be removed (I ended up using a magnetic pick up tool to help). Next up is to remove the stub axle, this was a little trickier due to limited tools. I tried a 3 leg puller but the gap between the hub and stub axle wasn't enough for the legs to get in and under. Next option was a lump hammer and someone pulling the stub axle at the same time. After a few heavy hits it released. The lower bearing race had seized itself onto the stub axle, which was fine because I was replacing them anyway. With the upper bearing race removed and the grease cleaned off they looked like this The left one looked pristine inside but gave us the most trouble. The right one had some surface rust but came apart in a single hit, figure that out?! I got a local garage to press the new wheel bearings in, reassemble was the opposite and didn't take long at all. Removing the hub itself was simple. Starting with removing the brake caliper, 2x 14mm bolts for the caliper slider and 2x 19mm? for the carrier > hub bolts. I used a cable tie to secure the caliper to the upper arm so it was out of the way, there's a 10mm bolt securing the ABS sensor on. With the brake disc removed from the hub next are the three castle nuts for the upper and lower ball joints and track rod end. Two of these had their own R clip and one split pin. A few hits with the hammer and they're released (I left the castle nuts on by a couple of turns), the track rod ends gave me the most grief and I may have nipped the boots (oops). Fitting is the reversal and is very quick and easy to do. The lower ball joints are held onto the hub by 2x 17mm bolts. The castle nut did increase in socket size to 22mm from memory (this may vary from supplier) The two front tyres weren't in great condition, so I had those replaced with some budget tyres for the time being. I'll be replacing the wheels and tyres in the future, this was to get me on the road without the worry of the police hassling me.
    • Yep, the closest base tune available was for the GTT, I went with that and made all the logical changes I could find to convert it to Naturally Aspirated. It will rev fine in Neutral to redline but it will be cutting nearly 50% fuel the whole way.  If I let it tune the fuel map to start with that much less fuel it wont run right and has a hard time applying corrections.  These 50% cuts are with a fuel map already about half of what the GTT tune had.  I was having a whole lot of bogging when applying any throttle but seem to have fixed that for no load situations with very aggressive transient throttle settings. I made the corrections to my injectors with data I found for them online, FBCJC100 flowing 306cc.  I'll have to look to see if I can find the Cam section. I have the Bosch 4.9 from Haltech. My manifold pressure when watching it live is always in -5.9 psi/inHg
    • Hi My Tokico BM50 Brake master cylinder has a leak from the hole between the two outlets (M10x1) for brake pipes, I have attached a photo. Can anyone tell me what that hole is and what has failed to allow brake fluid to escape from it, I have looked on line and asked questions on UK forums but can not find the answer, if anyone can enlighten me I would be most grateful.
    • It will be a software setting. I don't believe many on here ever used AEM. And they're now a discontinued product,that's really hard to find any easy answers on. If it were Link or Haltech, someone would be able to just send you a ECU file though.
×
×
  • Create New...