Jump to content
SAU Community

Recommended Posts

Is my engine under more stress if i run the same boost (possibly less), the same rpm, the same approx A/F values but make more power. This also assumes that my radiator and oil cooler are suitably sized to remove any additional heat input.

Reason i ask is that i was told my engine may not handle the extra power that my turbo setup makes if i installed some cams. If im increasing the effeciency of a motor am i stressing it more?

Link to comment
https://www.sau.com.au/forums/topic/51165-stresses-on-engines/
Share on other sites

ooh ooh a classmate :D

 

Was Roy a real nerd then? ;)

I was always too dumb to be a nerd :( And surprise, surprise too busy talking about the weekends pi55 up :D

I can do the mechanics of it all, but basically ; more air, more fuel more bang = more power.

The more bang is the concern. :Oops:

But if i keep revs sane, ie std at 7,200rpm, oil and water temps under control and only run 1.2bar, would having a set of cams that take power from 235-240 to 245-260rwkws really hurt a std RB20 that much more then running the extra 0.2bar of boost (i have my scramble set to 1.4bar...so when its pointed in the right direction i give it hits from 1.1 to 1.4 bar for the straights) :Bang:

Just added up what this whole RB26 cam farkup has cost me, :)

There is probably an energy equation in there related to each cylinder i'm guessing.. and the amount of time that energy remains in the cylinder (which would be controlled by the duration of the cams amongst other things)

Unfortunately I forgot my maths nearly 10 years ago :D freakin computers...

it would be easy to say there would be less stress on the engine when gaining power from cams then rasing boost as they both increase air flow but cams dont increase heat, like adding more boost.

I think that hold's true because what i have read of SK's posts being able to run reliable 250kw with cams and stock injectors but going about making 250kw with a fuel reg and boost the pistons burn and die. So 200kw becomes the reliable power limit.

SO GO THE CAMS!!! :D

Thermal stress, or mechanical stress ? they are quite different.

You can quite easily blow up a stock engine by leaning it out, as we all know. Thermal stress is probably the most dangerous with a mildly modified engine, if it is badly tuned or not tuned at all. Detonation damage is another very quick killer of turbo engines. None of this has anything to do with the basic strength or integrity of the engine itself.

Mechanical stress is a completely different thing. Rpm and inertia forces are what most likely are going to break things and that has little to do with power output. If it is properly tuned and you stay within the factory redline it can make significantly more power without any additional MAXIMUM mechanical loading. The average loads will be up, and the torque be higher, but that will not break things, except maybe the clutch.

Bigger cams and valve springs might be dangerous if you then expect to wind it out to 10,000 Rpm all the time, or buzz the engine by dropping back to second gear at 160 Kmh. An extreme and silly example, but you get the idea.

LOL, its an internal combustion engine, and ppl never meantion cyclic loads:)

I may just wait 3 months and 10-15,000kms to see how the wrecker engine goes before i get the courage to lean on it a bit more with cams. Want to eliminate as many variables as possible so if the engine goes bang i at least have an idea of why.

But the power cannot go up at the same rpmif the torque doesn't, which means that there has to be more load on the piston, conrod and crank (as well as all the inbetweens) and so it goes. If it was RPM increase alone then sure, inertial forces increase, but more power at the same rpm means there is more air going in, therefore more fuel required for a stoich mixture, so a bigger bang must result.

I'd run a little extra power until you are able to get an oil change/oil analysis done, then plan the next power increase. Fuelling is not an issue for your setup though mate.

Your call.......

This is a interesting topic

Whats everyone's general opinion about the safe power level (assuming all the support systems are up to scratch) for each RB motor?

my understanding is -

RB20 - 240-250rwkw with around 7500 as a 'safe' RPM

RB25 - 290-300rwkw with around 7300 as a 'safe' RPM

RB26 - 300-320rwkw with around 7800 as a 'safe' RPM

I think revs and detonation are the real killer of RB's, keep both of them under control and I reckon there is no reason Roy your engine would be under any great deal of more stress

Chris

This is a interesting topic

Whats everyone's general opinion about the safe power level (assuming all the support systems are up to scratch) for each RB motor?

my understanding is -

RB20 - 240-250rwkw with around 7500 as a 'safe' RPM

RB25 - 290-300rwkw with around 7300 as a 'safe' RPM

RB26 - 300-320rwkw with around 7800 as a 'safe' RPM

I think revs and detonation are the real killer of RB's, keep both of them under control and I reckon there is no reason Roy your engine would be under any great deal of more stress

Chris

Hi Chris, I would be inclined to believe that the RB20 safe rpm limit is more like 8,000 rpm. Ours has been at 225 rwkw for over 2 years and we run it to the rev limited 8,250 rpm all the time. I would add heat to your list of RB killers, especially oil temperature. But by far the worst thing for R's is poor tuning.

:cheers:

Ok cool

mine currently has a rev limit of around 8200 with my re-programmed ECU

What would be a sensible every day rev limit for a RB20 running about 18 psi boost

Agree re oil cooler, I put one on early on, perhaps thats why mine has survived as long as it has

Theoretically with a set of larger cams the dynamic compression ratio is lowered. Reducing the thermal stress and detonation issues.

The motor 'should' be a little more forgiving.

If a rod is going to let go it will let go. Not because of the cams making a little more power.

A good set of cams help the combustion process become more controlled and less likely to detonate.

It may explain why Steve's old R33 held 320rwkw without the usual issue of cracked ringlands.

Lowered comp 8.6:1 and a set of cams.

EDIT: Cam selection for NA is fairly straight forward being the larger the cam the higher the static comp needs to be in order for the DCR to be in a good range to suit the fuel. (otherwise it will make less power)

With Forced induction it throws another variable in to the equation.

Joel is spot on. Have a look at the Mazda Miller engine, it will amaze you. Although supercharged not turbocharged, this engine has a static compression ratio of 10.2 :1 and runs 18 psi boost from the factory. And they don't detonate either.

The reason being the inlet valve closes 72 degrees after BDC. The piston is almost half way up the bore before the inlet valve closes, meaning only half the actual piston stroke compresses anything.

Think about it. If the theoretical compression ratio is 10:1 and if only HALF the stroke length is used it would only actually be 5:1. It is not quite that low, but you get the general idea. It is not that simple because of con rod angles and piston motion, but late inlet closing does reduce compression. The cranking pressure with a compression gauge will give a pretty good idea of this effect as well.

As Joel says, some of the normally aspirated racing engines run 16:1 compression ratio, but the cams are pretty extreme too.

With a turbo, what stuffs things up is exhaust back pressure, which is nearly always more than boost. On a stock factory engine it might be twice boost pressure. If you have turned up the boost yourself it might be closer to three times boost pressure.

A large overlap cam simply is not going to work with a small turbo. Small turbo, small cam. Big turbo big cam is the general trend.

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now


  • Similar Content

  • Latest Posts

    • As discussed in the previous post, the bushes in the 110 needed replacing. I took this opportunity to replace the castor bushes, the front lower control arm, lower the car and get the alignment dialled in with new tyres. I took it down to Alignment Motorsports on the GC to get this work done and also get more out of the Shockworks as I felt like I wasn't getting the full use out of them.  To cut a very long story short, it ended up being the case the passenger side castor arm wouldn't accept the brand new bush as the sleeve had worn badly enough to the point you could push the new bush in by hand and completely through. Trying a pair of TRD bushes didn't fix the issue either (I had originally gone with Hardrace bushes). We needed to urgently source another castor arm, and thankfully this was sourced and the guys at the shop worked on my car until 7pm on a Saturday to get everything done. The car rides a lot nicer now with the suspension dialled in properly. Lowered the car a little as well to suit the lower profile front tyres, and just bring the car down generally. Eternally thankful for the guys down at the shop to get the car sorted, we both pulled big favours from our contacts to get it done on the Saturday.  Also plugged in the new Stedi foglights into the S15, and even from a quick test in the garage I'm keen to see how they look out on the road. I had some concerns about the length of the LED body and whether it'd fit in the foglight housing but it's fine.  I've got a small window coming up next month where I'll likely get a little paint work done on the 110 to remove the rear wing, add a boot wing and roof wing, get the side skirt fixed up and colour match the little panel on the tail lights so that I can install some badges that I've kept in storage. I'm also tempted to put in a new pair of headlights on the 110.  Until then, here's some more pictures from Easter this year. 
    • I would put a fuel pressure gauge between the filter and the fuel rail, see if it's maintaining good fuel pressure at idle going up to the point when it stalls. Do you see any strange behavior in commanded fuel leading up to the point when it stalls? You might have to start going through the service manual and doing a long list of sensor tests if it's not the fuel system for whatever reason.
    • Hi,  Just joined the forum so I could share my "fix" of this problem. Might be of use to someone. Had the same hunting at idle issue on my V36 with VQ35HR engine after swapping the engine because the original one got overheated.  While changing the engine I made the mistake of cleaning the throttle bodies and tried all the tricks i could find to do a throttle relearn with no luck. Gave in and took it to a shop and they couldn't sort it. Then took it to my local Nissan dealership and they couldn't get it to idle properly. They said I'd need to replace the throttle bodies and the ecu probably costing more than the car is worth. So I had the idea of replacing the carbon I cleaned out with a thin layer of super glue and it's back to normal idle now. Bit rough but saved the car from the wreckers 🤣
    • After my last update, I went ahead with cleaning and restoring the entire fuel system. This included removing the tank and cleaning it with the Beyond Balistics solution, power washing it multiple times, drying it thoroughly, rinsing with IPA, drying again with heat gun and compressed air. Also, cleaning out the lines, fuel rail, and replacing the fuel pump with an OEM-style one. During the cleaning process, I replaced several hoses - including the breather hose on the fuel tank, which turned out to be the cause of the earlier fuel leak. This is what the old fuel filter looked like: Fuel tank before cleaning: Dirty Fuel Tank.mp4   Fuel tank after cleaning (some staining remains): Clean Fuel Tank.mp4 Both the OEM 270cc and new DeatschWerks 550cc injectors were cleaned professionally by a shop. Before reassembling everything, I tested the fuel flow by running the pump output into a container at the fuel filter location - flow looked good. I then fitted the new fuel filter and reassembled the rest of the system. Fuel Flow Test.mp4 Test 1 - 550cc injectors Ran the new fuel pump with its supplied diagonal strainer (different from OEM’s flat strainer) and my 550cc injectors using the same resized-injector map I had successfully used before. At first, it idled roughly and stalled when I applied throttle. Checked the spark plugs and found that they were fouled with carbon (likely from the earlier overly rich running when the injectors were clogged). After cleaning the plugs, the car started fine. However, it would only idle for 30–60 seconds before stalling, and while driving it would feel like a “fuel cut” after a few seconds - though it wouldn’t fully stall. Test 2 – Strainer swap Suspecting the diagonal strainer might not be reaching the tank bottom, I swapped it for the original flat strainer and filled the tank with ~45L of fuel. The issue persisted exactly the same. Test 3 – OEM injectors To eliminate tuning variables, I reinstalled the OEM 270cc injectors and reverted to the original map. Cleaned the spark plugs again just in-case. The stalling and “fuel cut” still remained.   At this stage, I suspect an intermittent power or connection fault at the fuel pump hanger, caused during the cleaning process. This has led me to look into getting Frenchy’s fuel hanger and replacing the unit entirely. TL;DR: Cleaned and restored the fuel system (tank, lines, rail, pump). Tested 550cc injectors with the same resized-injector map as before, but the car stalls at idle and experiences what feels like “fuel cut” after a few seconds of driving. Swapped back to OEM injectors with original map to rule out tuning, but the issue persists. Now suspecting an intermittent power or connection fault at the fuel pump hanger, possibly cause by the cleaning process.  
×
×
  • Create New...