Jump to content
SAU Community

Recommended Posts

I have just recieved my ARC intercooler for my R33 GTR. The kit comes with piping and also some solid plugs to fit into the BOV lines. I am not sure if I should be installing after market BOV's or not. Will the Lack of BOV's cause issues?? Or is the a ploy by ARC to increase engine response...from what I can see the twin entry piping will not fit with the BOV return line.

Matt

ARC.php.jpg

post-2338-1146723432.jpg

Edited by BOOSTD
Link to comment
https://www.sau.com.au/forums/topic/116354-arc-twin-entry-intercooler/
Share on other sites

you dont need to use that side's (the BOV side) piping. you could still use the standard one and then you wont have to worry about having to change BOV's or blocking it off. Personally, i would keep the stock ones on.

Not sure if I follow you guys. The ARC cooler kit has twin inlets. The associated piping has to have the BOV return pipe reomoved to fit. (from the two inlet pipes after the AFM's) Also the return BOV plastic pipe behind the intercooler has to be removed as the angle ARC have set the intercooler on is pretty large.(leaning forward)

I just finished installing my ARC intercooler. My initial impession was a massive increase in low to midrange and much sharper throttle response. After further investigation I found the car was running significantly lower boost but no loss in power. I put this down to much less restriction from the intercooler....which is what ARC are all about. At .6 bar in first and second the car spins up all 4 and changes lanes by itself. I haven't loaded it up in any other gear as the tuning is all up to sh$T now. I can't wait for another dyno run so I can over lap the two.

Conclusion <ARC are GODS>

PS this cooler replaced a TRUST item of same thickness

... if you're measuring _after_ the cooler, a lower pressure drop across the cooler due to restriction

should theoretically see a pressure _increase_ at the measurement point (i.e. higher boost) all other

things being equal. So in theory, your newer cooler could be a larger restriction, resulting in lower

displayed boost at the plenum.

All other things, of course, aren't equal. If the cooler is cooling better, you should have denser air

at the measurement point - lower volume - lower boost, all other things being equal (they aren't :)).

I'd guess that this is what's happened - did you happen to take any temp readings before/after the change?

ARC have a good rep for a good reason; shame their kit's so expensive.

Regards,

Saliya

Im confused?????

I understand that a better flowing core will flow more at less boost but you said you didnt touch the boost setting, or thats what I assumed. So from your theory, if you got an even better flowing core than this one boost would drop again without touching the settings? And that if you removed the core and ran a straight pipe boost would lower by itself again?

Transversely, if you fitted a restrictor with a 5mm opening your boost pressure would rise dramatically without adjusting settings according to your reasoning. Is that what your saying?

I thought what Roy thought and that if your new cooler flowed better that pressure would rise on its own and you would have to adjust it lower.

... if you're measuring _after_ the cooler, a lower pressure drop across the cooler due to restriction

should theoretically see a pressure _increase_ at the measurement point (i.e. higher boost) all other

things being equal. So in theory, your newer cooler could be a larger restriction, resulting in lower

displayed boost at the plenum.

This is exactly what i was thinking. As others have stated, less restriction in the I/C, will results in a higher boost level

less restriction means you can put more air through the piping and engine with less work in the turbo, so the more boost is capable. 8psi in a normal I/C flows less air then 8psi in a high flow situation. This is the same with stock turbos and higflow turbos.

boost is measured at the plenum.

boostd is a measurement of restriction, flow is what makes power. The cooler flows the same at less boost

I think we are missing part of the equation. You havent touched your boost settting. So say before they were pumping out 14psi measured at your inlet plenum. With the std cooler you may have had say a 2psi pressure drop. You may have foud that if you measured boost at the turbo outlet before the intercooler then you may have actually been running 16psi...only because of the pressure drop your engien never saw that boost level.

So you install a better flowing intercooler...so now that 16psi your turbos were having to pump out to see 14psi at the plenum will be more likely seen at the plenum. So that would mean more boost at the plenum.

So something isnt right

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now


  • Similar Content

  • Latest Posts

    • For once a good news  It needed to be adjusted by that one nut and it is ok  At least something was easy But thank you very much for help. But a small issue is now(gearbox) that when the car is stationary you can hear "clinking" from gearbox so some of the bearing is 100% not that happy... It goes away once you push clutch so it is 100% gearbox. Just if you know...what that bearing could be? It sounding like "spun bearing" but it is louder.
    • Yeah, that's fine**. But the numbers you came up with are just wrong. Try it for yourself. Put in any voltage from the possible range and see what result you get. You get nonsense. ** When I say "fine", I mean, it's still shit. The very simple linear formula (slope & intercept) is shit for a sensor with a non-linear response. This is the curve, from your data above. Look at the CURVE! It's only really linear between about 30 and 90 °C. And if you used only that range to define a curve, it would be great. But you would go more and more wrong as you went to higher temps. And that is why the slope & intercept found when you use 50 and 150 as the end points is so bad halfway between those points. The real curve is a long way below the linear curve which just zips straight between the end points, like this one. You could probably use the same slope and a lower intercept, to move that straight line down, and spread the error out. But you would 5-10°C off in a lot of places. You'd need to say what temperature range you really wanted to be most right - say, 100 to 130, and plop the line closest to teh real curve in that region, which would make it quite wrong down at the lower temperatures. Let me just say that HPTuners are not being realistic in only allowing for a simple linear curve. 
    • I feel I should re-iterate. The above picture is the only option available in the software and the blurb from HP Tuners I quoted earlier is the only way to add data to it and that's the description they offer as to how to figure it out. The only fields available is the blank box after (Input/ ) and the box right before = Output. Those are the only numbers that can be entered.
    • No, your formula is arse backwards. Mine is totally different to yours, and is the one I said was bang on at 50 and 150. I'll put your data into Excel (actually it already is, chart it and fit a linear fit to it, aiming to make it evenly wrong across the whole span. But not now. Other things to do first.
    • God damnit. The only option I actually have in the software is the one that is screenshotted. I am glad that I at least got it right... for those two points. Would it actually change anything if I chose/used 80C and 120C as the two points instead? My brain wants to imagine the formula put into HPtuners would be the same equation, otherwise none of this makes sense to me, unless: 1) The formula you put into VCM Scanner/HPTuners is always linear 2) The two points/input pairs are only arbitrary to choose (as the documentation implies) IF the actual scaling of the sensor is linear. then 3) If the scaling is not linear, the two points you choose matter a great deal, because the formula will draw a line between those two points only.
×
×
  • Create New...