Jump to content
SAU Community

Recommended Posts

You will find turbo engines that need high boost pressure to achieve the desired horsepower are going to need high fuel rail pressure just to keep the head of pressure over manifold pressure . I think you can do better than that turbo for the power , something with better exhaust flow through the turbine side would help . That 90T turbine in the "overbored" GT28 turbine housing is known to perform poorly and the .64AR ratio is going to choke the living shite out of it .

The propper Garrett GT3071R with the full sized (and unmolested) 60 x 55mm 84 trim turbine in a REAL GT30 turbine housing works much better . The above thing may have an integral wastegate but the other compromises (T28 flange and butchered GT28 housing) just don't work well enough .

Sorry to be negative but I think the GT3071R "Wastegated" creates too many other issues and fixing them is not cost effective .

Cheers A .

As always it depends on what else is upgraded to suit and if you intent to spend much time at that 280Kw level .

To make 280Kw divide by 3 and multiply by 4 to get approx Hp or ~ 375 . Divide 375 by 11 to get required lbs of air = 34.1 plus 10% = 37.5lbs . 0.6 times air in lbs gives a fair air flow to exhaust flow ratio so 22.5lbs exhaust .

The closest match I can find is the GT3071R which has ~ 45lbs air and ~ 23lbs exhaust flow with a GT30 .82AR ratio turbine housing . It does not have an integral wastegate . That particular GT3071R is cartridge no 700177-0023 or -5023 , it does not have a turbo unit number because its only sold by Garrett as a cartridge to which you add your choise of Garrett exhaust and compressor housing kits . ATP turbo in the US can supply it complete with a choise of .63 .82 or 1.06AR ratio exhaust housings .

The closest thing in a HKS would be the GT2835 Pro S which also has a T3 mount flange but also an integral wastegate . This one may be a tad shorter on exhaust flow but some want the convienence of the integral wastegate .

Garrett is supposed to be releasing a new .82AR ratio GT30 integral gate T3 flanged housing which has gone back to late July - production lead times I'm told . This on the above mentioned GT3071R would be my choise ATM . The HKS Cast low mount exhaust manifold would help but can't promise the turbo would clear the engine mount and bodywork .

You need to be real sure 280Kw is what you really want and that the engine can stand up to that figure reliably . I reckon 240 Kw and the state of tune that could have would be nicer to drive and easier to live with in a road driven R34 but thats my ideals only . The R34 Neo's turbo in GCG's high flow form may just about reach that 240Kw figure with the right supporting mods and goes - bolt .

Your call .

The problem with the GT30R is that its a bit short on turbine area itself . Its maps show it as having ~ 53lbs air capacity but the turbine map "flat lines" at ~ 26 and a bit lbs (and thats in its largest 1.06AR turbine housing form) so not really enough . If you divide the turbine flow number into the compressor flow number you get .50 or 50% which is not enough ideally .

The original Garrett bush bearing GT37 turbo (GT30R turbo uses a GT37 compressor as does HKS and why they call theirs GT30-37) is powered by a 72.5mm GT37 turbine which is not short on exhaust flow . A better match for petrol would have been something in between the GT30 turbine (60mm) and GT35 turbine (68mm) PROVIDED you really needed all that the 56T GT37 compressor can pump .

If you compare the 56T GT37 compressor map to the 56T GT35 map (GT3071R's comp) the 35 map is not too far behind the 37 in the flow stakes . Some of this is because the GT37 compressor is in a TO4E housing which was designed for 76mm compressors . The GT35 compressor is also in a TO4E housing in GT3071R form though the AR ratio is .5 rather than .6 and its snout is not port shrouded .

HKS had a fair idea that the GT30 turbine GT37 compressor combination could be a bit laggy in large or 56 compressor trim so they offered it in 48 and 52 compressor trim as well . This is part of the reason why some of their GT3037's respond better and get some boost and torque happening earlier than the Garrett GT30R can . A while back Garrett was developing a competition turbocharger for CART and WRC (probably Indi as well) known as the TR30R . The GT3071R ended up being the productionised cousin of the TR30R and is a better way of achieving what the smaller trim GT3037's can do . Compressor maps of the 48 and 52 trim GT37 maps are hard to find but the results are very similar to the 52 and 56 trim GT35 wheels . Just in case you don't know GT37 compressors are generally 76mm and GT35 71mm .

Garrett could have used smaller turbine trims earlier than they have which would have allowed them to go up a family on turbines for much of their compressor range . The GT3071R is one example of the turbine upsize though the trim at 84 did not change .

It has happened with the recently developed GT4088R where the turbine trim is 78 . It is also significant that the HKS marketed T51R is using a 76 trim turbine while the garden variety Garrett marketed GT4294R makes do with an 84 trim turbine of the same family . There is nothing to stop Garrett using 76-80 trim versions of their GT30 and GT35 turbines , the GT40 and 42's are already in use .

I think the way you should look at it is that rather than the GT3071R's wheel being near the limit its closer to being in sync with its turbine sides flow potential .

Cheers A .

with gt-rs

300rwkw on rb25det non neo with cams is do-able

300rwkw on rb25det neo is unseen (that i know of)

pete has gcg hiflow and cams and makes 250rwkw

i think matt has 2835 pro and made somewhere around 250rwkw

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now


  • Similar Content

  • Latest Posts

    • I came here to note that is a zener diode too base on the info there. Based on that, I'd also be suspicious that replacing it, and it's likely to do the same. A lot of use cases will see it used as either voltage protection, or to create a cheap but relatively stable fixed voltage supply. That would mean it has seen more voltage than it should, and has gone into voltage melt down. If there is something else in the circuit dumping out higher than it should voltages, that needs to be found too. It's quite likely they're trying to use the Zener to limit the voltage that is hitting through to the transistor beside it, so what ever goes to the zener is likely a signal, and they're using the transistor in that circuit to amplify it. Especially as it seems they've also got a capacitor across the zener. Looks like there is meant to be something "noisy" to that zener, and what ever it was, had a melt down. Looking at that picture, it also looks like there's some solder joints that really need redoing, and it might be worth having the whole board properly inspected.  Unfortunately, without being able to stick a multimeter on it, and start tracing it all out, I'm pretty much at a loss now to help. I don't even believe I have a climate control board from an R33 around here to pull apart and see if any of the circuit appears similar to give some ideas.
    • Nah - but you won't find anything on dismantling the seats in any such thing anyway.
    • Could be. Could also be that they sit around broken more. To be fair, you almost never see one driving around. I see more R chassis GTRs than the Renault ones.
    • Yeah. Nah. This is why I said My bold for my double emphasis. We're not talking about cars tuned to the edge of det here. We're talking about normal cars. Flame propagation speed and the amount of energy required to ignite the fuel are not significant factors when running at 1500-4000 rpm, and medium to light loads, like nearly every car on the road (except twin cab utes which are driven at 6k and 100% load all the time). There is no shortage of ignition energy available in any petrol engine. If there was, we'd all be in deep shit. The calorific value, on a volume basis, is significantly different, between 98 and 91, and that turns up immediately in consumption numbers. You can see the signal easily if you control for the other variables well enough, and/or collect enough stats. As to not seeing any benefit - we had a couple of EF and EL Falcons in the company fleet back in the late 90s and early 2000s. The EEC IV ECU in those things was particularly good at adding in timing as soon as knock headroom improved, which typically came from putting in some 95 or 98. The responsiveness and power improved noticeably, and the fuel consumption dropped considerably, just from going to 95. Less delta from there to 98 - almost not noticeable, compared to the big differences seen between 91 and 95. Way back in the day, when supermarkets first started selling fuel from their own stations, I did thousands of km in FNQ in a small Toyota. I can't remember if it was a Starlet or an early Yaris. Anyway - the supermarket servos were bringing in cheap fuel from Indonesia, and the other servos were still using locally refined gear. The fuel consumption was typically at least 5%, often as much as 8% worse on the Indo shit, presumably because they had a lot more oxygenated component in the brew, and were probably barely meeting the octane spec. Around the same time or maybe a bit later (like 25 years ago), I could tell the difference between Shell 98 and BP 98, and typically preferred to only use Shell then because the Skyline ran so much better on it. Years later I found the realtionship between them had swapped, as a consequence of yet more refinery closures. So I've only used BP 98 since. Although, I must say that I could not fault the odd tank of United 98 that I've run. It's probably the same stuff. It is also very important to remember that these findings are often dependent on region. With most of the refineries in Oz now dead, there's less variability in local stuff, and he majority of our fuels are not even refined here any more anyway. It probably depends more on which SE Asian refinery is currently cheapest to operate.
    • You don't have an R34 service manual for the body do you? Have found plenty for the engine and drivetrain but nothing else
×
×
  • Create New...