Jump to content
SAU Community

Recommended Posts

This is some engine:

Maximum power: 108,920 hp at 102 rpm

Maximum torque: 5,608,312 lb/ft at 102rpm

post-32489-1241066333_thumb.jpg

The Wartsila-Sulzer RTA96-C turbocharged two-stroke diesel engine is the most powerful and most efficient prime-mover in the world today. The Aioi Works of Japan 's Diesel United, Ltd built the first engines and is where some of these pictures were taken. It is available in 6 through 14 cylinder versions, all are inline engines. These engines were designed primarily for very large container ships. Ship owners like a single engine/single propeller design and the new generation of larger container ships needed a bigger engine to propel them. The cylinder bore is just under 38" and the stroke is just over 98". Each cylinder displaces 111,143 cubic inches (1820 liters) and produces 7780 horsepower. Total displacement comes out to 1,556,002 cubic inches (25,480 liters) for the fourteen cylinder version.

Some facts on the 14 cylinder version:

Total engine weight: 2300 tons (The crankshaft alone weighs 300 tons.)

Length: 89 feet

Height: 44 feet

Maximum power: 108,920 hp at 102 rpm

Maximum torque: 5,608,312 lb/ft at 102rpm

Fuel consumption at maximum power is 0.278 lbs per hp per hour (Brake Specific Fuel Consumption). Fuel consumption at maximum economy is 0.260 lbs/hp/hour. At maximum economy the engine exceeds 50% thermal efficiency. That is, more than 50% of the energy in the fuel in converted to motion.

For comparison, most automotive and small aircraft engines have BSFC figures in the 0.40-0.60 lbs/hp/hr range and 25-30% thermal efficiency range.

Even at its most efficient power setting, the big 14 consumes 1,660 gallons of heavy fuel oil per hour.

post-32489-1241066605_thumb.jpg

The internals of this engine are a bit different than most automotive engines.

The top of the connecting rod is not attached directly to the piston. The top of the connecting rod attaches to a "crosshead" which rides in guide channels. A long piston rod then connects the crosshead to the piston.

I assume this is done so the the sideways forces produced by the connecting rod are absorbed by the crosshead and not by the piston. Those sideways forces are what makes the cylinders in an auto engine get oval-shaped over time.

Installing the "thin-shell" bearings. Crank & rod journals are 38" in diameter and 16" wide:

post-32489-1241066612_thumb.jpg

The crank sitting in the block (also known as a "gondola-style" bedplate). This is a 10 cylinder version. Note the steps by each crank throw that lead down into the crankcase:

post-32489-1241066619_thumb.jpg

A piston & piston rod assembly. The piston is at the top. The large square plate at the bottom is where the whole assembly attaches to the crosshead:

post-32489-1241066624_thumb.jpg

Some pistons:

post-32489-1241066629_thumb.jpg

And some piston rods:

post-32489-1241066636_thumb.jpg

The "spikes" on the piston rods are hollow tubes that go into the holes you can see on the bottom of the pistons (left picture) and inject oil into the inside of the piston which keeps the top of the piston from overheating. Some high-performance auto engines have a similar feature where an oil squirter nozzle squirts oil onto the bottom of the piston.

The cylinder deck (10 cylinder version). Cylinder liners are die-cast ductile cast iron. Look at the size of those head studs!:

post-32489-1241066645_thumb.jpg

The first completed 12 cylinder engine:

post-32489-1241066651_thumb.jpg

Link to comment
https://www.sau.com.au/forums/topic/267770-worlds-largest-engine/
Share on other sites

I have a friend who works on big diesel ship engines, he said to stop the boat they run the engine in reverse. Only it can take up to 30 mins to get it running backwards and then it can backfire and blow the massive turbo to bits!!

Also, not only is this the worlds biggest engine, but the worlds biggest repost.

I want that turbo for my car! does it dose bro cuz chich man re uleh

sweet... drop a brick on the accelerator and go to bed, and by the time you wake up the next morning and get in the car, you should have enough boost for a launch...

sweet... drop a brick on the accelerator and go to bed, and by the time you wake up the next morning and get in the car, you should have enough boost for a launch...

Nah you just need an rb26 that revs to 1,000,000RPM :banana:

  • 2 weeks later...

Can someone get in contact with them and find out if they are parting the engine? I'm looking to upgrade my throttle body to a throttle room.

Mines will probably crack its ECU and release an upgrade.

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now


  • Similar Content

  • Latest Posts

    • It would be well worth deciding where you want to go and what you care about. Reliability of everything in a 34 drops MASSIVELY above the 300kw mark. Keeping everything going great at beyond that value will cost ten times the $. Clutches become shit, gearboxes (and engines/bottom ends) become consumable, traction becomes crap. The good news is looking legalish/actually being legal is slighly under the 300kw mark. I would make the assumption you want to ditch the stock plenum too and want to go a front facing unit of some description due to the cross flow. Do the bends on a return flow hurt? Not really. A couple of bends do make a difference but not nearly as much in a forced induction situation. Add 1psi of boost to overcome it. Nobody has ever gone and done a track session monitoring IAT then done a different session on a different intercooler and monitored IAT to see the difference here. All of the benefits here are likely in the "My engine is a forged consumable that I drive once a year because it needs a rebuild every year which takes 9 months of the year to complete" territory. It would be well worth deciding where you want to go and what you care about with this car.
    • By "reverse flow", do you mean "return flow"? Being the IC having a return pipe back behind the bumper reo, or similar? If so... I am currently making ~250 rwkW on a Neo at ~17-18 psi. With a return flow. There's nothing to indicate that it is costing me a lot of power at this level, and I would be surprised if I could not push it harder. True, I have not measured pressure drop across it or IAT changes, but the car does not seem upset about it in any way. I won't be bothering to look into it unless it starts giving trouble or doesn't respond to boost increases when I next put it on the dyno. FWIW, it was tuned with the boost controller off, so achieving ~15-16 psi on the wastegate spring alone, and it is noticeably quicker with the boost controller on and yielding a couple of extra pounds. Hence why I think it is doing OK. So, no, I would not arbitrarily say that return flows are restrictive. Yes, they are certainly restrictive if you're aiming for higher power levels. But I also think that the happy place for a street car is <300 rwkW anyway, so I'm not going to be aiming for power levels that would require me to change the inlet pipework. My car looks very stock, even though everything is different. The turbo and inlet pipes all look stock and run in the stock locations, The airbox looks stock (apart from the inlet being opened up). The turbo looks stock, because it's in the stock location, is the stock housings and can't really be seen anyway. It makes enough power to be good to drive, but won't raise eyebrows if I ever f**k up enough for the cops to lift the bonnet.
    • There is a guy who said he can weld me piping without having to cut chassis, maybe I do that ? Or do I just go reverse flow but isn’t reverse flow very limited once again? 
    • I haven’t yet cut the chassis, maybe I switch to a reverse flow. I’ve got the Intercooler mounted as I already had it but not cut yet. Might have to speak to an engineer 
    • Yes that’s another issue, I always have a front mount, plus will be turbo plus intake will big hasstle. I’ve been told if it looks stock they’re fine with it by a couple others who have done it ahahaha.    I know @Kinkstaah said the stock gtt airbox is limiting but I might just have to do that to avoid a defect so it atleast looks legit. Or an enclosed pod so it’s hidden away and feed air from the snorkel and below Intercooler holes like kinstaah mentioned. Hmm what to do 
×
×
  • Create New...