Jump to content
SAU Community

Recommended Posts

I was originally under the impression that turbo choice wouldn't effect power as long as the psi its putting into the engine is the same.

For instance two turbos, 1 reaches full boost at 3000rpm. The second which is slightly bigger reaches full boost at 3500rpm. Both are putting the same psi into the same engine. Are they both going to make the same power at 6000 rpm, because both are putting in the exact same amount of boost in at that time?

Hope you understand what im getting at, and can clear it up for me.

Link to comment
https://www.sau.com.au/forums/topic/300803-power-versus-turbo-choice/
Share on other sites

I was originally under the impression that turbo choice wouldn't effect power as long as the psi its putting into the engine is the same.

For instance two turbos, 1 reaches full boost at 3000rpm. The second which is slightly bigger reaches full boost at 3500rpm. Both are putting the same psi into the same engine. Are they both going to make the same power at 6000 rpm, because both are putting in the exact same amount of boost in at that time?

Hope you understand what im getting at, and can clear it up for me.

no, think of turbos as pumps 15psi from a truck size turbo is going to pump alot more air into the engine than a small lawnmower turbo pumping 15psi

Hmmm weird, i just immediately thought that once the psi equals your set level your wastegate will open, there fore its not going to matter what your volume is.

In other words more volume into space = more pressure.

Your going to need to do a fair bit of reading. No offense.

say for example you have 2 pipes, both flowing @ 15psi. one pipe is 50mm, the other is 100mm thick. you are getting more air out of the 100mm pipe than you are out of the 50mm one.

this is the same for turbos. the bigger the turbo, the more air it will push out. a bigger turbo can produce the same flow at a lower psi than a smaller turbo can produce at its highest psi. for example, a standard r33 turbo will cause a car to produce 200kw @ 12psi because it can flow a certain amount of air at 12psi. a larger turbo, for example a gt35r can produce the same 200kw but at a lower psi (say 7psi) because it can flow the same amount of air at that psi. at 12psi on the gt35 will see you pushing out almost 300kw because it can flow much more air at 12psi.

cars run on air and spark (basically). if you have more air flowing through the motor you can produce more power. it doesnt matter what the air pressure is, its the flow of air that will effect performance (ofcorse having lots of flow and high psi will produce lots and lots of power if your car can produce enough exhaust - but thats a whole other issue.

not sure if that makes sence - but i tried lol.

say for example you have 2 pipes, both flowing @ 15psi. one pipe is 50mm, the other is 100mm thick. you are getting more air out of the 100mm pipe than you are out of the 50mm one.

this is the same for turbos. the bigger the turbo, the more air it will push out. a bigger turbo can produce the same flow at a lower psi than a smaller turbo can produce at its highest psi. for example, a standard r33 turbo will cause a car to produce 200kw @ 12psi because it can flow a certain amount of air at 12psi. a larger turbo, for example a gt35r can produce the same 200kw but at a lower psi (say 7psi) because it can flow the same amount of air at that psi. at 12psi on the gt35 will see you pushing out almost 300kw because it can flow much more air at 12psi.

cars run on air and spark (basically). if you have more air flowing through the motor you can produce more power. it doesnt matter what the air pressure is, its the flow of air that will effect performance (ofcorse having lots of flow and high psi will produce lots and lots of power if your car can produce enough exhaust - but thats a whole other issue.

not sure if that makes sence - but i tried lol.

Yeh thats a pretty good explanation. If I didnt already know that Im sure I would know that now :D Like everyone has said think of it as thought air in a pipe or water going through a pipe. A uni students definition. If you have beer bong with a straw at the bottom your going to need a lot of pressure in it to drink your bourbon in under 5 seconds. However if you had some garden hose on there the bourbon will flow into your mouth a lot faster and with a lot less pressure. Hence the idea of using a bigger hose when you have a 1L + beer bong.

Nah but seriously securitys and trents definition are good. Mine is just coz I have some spare time at work :)

I sortof agree with the above explanations, however strictly speaking I'd say the engine is the "hose" bit of that explanation - the turbo is something different. The turbo has the capacity to pump a given amount of air at a given amount of pressure, but the engine has a natural capacity to move a certain amount of air at atmospheric pressure.

Any more air than that and the engine starts providing the turbo with resistance, which is (partly) where boost comes from. Pressure also increases with heat, so if the engine is able to breathe more than a turbo can move at a given pressure - then yes, you are likely to get more power on the same boost with a bigger turbo. If the turbo is able to pump more than the engine can breathe at a given boost level however, then going to an even bigger turbo will probably not make a lot of difference...

exactly, boost comes from the turbo pumping air against the backpressure of the motor, hook a turbo up to a pipe leading into thin air and it'll flow shitloads of air but make no boost. so with bigger cams and manifolds etc you'll flow the same amount of air on less boost with the same turbo aswell. the reason bigger turbos generally make more power is because of less restriction on the exhaust side and less effort from the bigger compressor to flow the same air, hence less heat, which means less pressure. also why heat makes such a big difference for turbo cars, we use boost as a control of airflow, so the amount of air flowing at that same boost level varies depending on the air temp.

exactly, boost comes from the turbo pumping air against the backpressure of the motor, hook a turbo up to a pipe leading into thin air and it'll flow shitloads of air but make no boost. so with bigger cams and manifolds etc you'll flow the same amount of air on less boost with the same turbo aswell. the reason bigger turbos generally make more power is because of less restriction on the exhaust side and less effort from the bigger compressor to flow the same air, hence less heat, which means less pressure. also why heat makes such a big difference for turbo cars, we use boost as a control of airflow, so the amount of air flowing at that same boost level varies depending on the air temp.

That's the best explanation i've read. I used to wonder why there wouldnt be a direct correlation between airflow and boost pressure, as i had thought that the engine would provided a fixed amount of resistance against a given flowrate. The difference is that we're talking about mass flowrate not volume flowrate. The bigger turbo = less temperature at the same pressure so more mass for the same volume. Is that it?

Its not quite that easy, but as an overly simplified view of it - yes. This kind of thing is why we have compressor maps showing percentage efficiency at different flow/pressure levels. There are cases where smaller turbos have higher compressor efficiency at equivalent flow rates - this can be but isn't strictly at the higher pressure ratios/lower flow levels and could partly answer why some smaller turbos can be perceived as torquier.

Bigger compressors tend to make and hold their efficiency at higher flow rates, which is why they tend to be capable of making more power at lower boost. The turbine flow comes directly into it as well, as the easier the exhaust can leave the engine - the easier more fresh air/fuel mixture can enter the engine.

I think im slowly learning something here, keep it up and i might retain some of it.

So basically boost (psi) is more a measurement of the air that's left before the engine uses it. If the engine can use the air the boost is lower, but the flow is the same or more.

@ Lukas, Yeah i understand basic turbo info. But still a little (a lot) clueless about compressor maps.

I think im slowly learning something here, keep it up and i might retain some of it.

So basically boost (psi) is more a measurement of the air that's left before the engine uses it. If the engine can use the air the boost is lower, but the flow is the same or more.

I don't think thats quite right. 'Boost' or the PSI is a measure of the pressure in the manifold piping created by the air. The measurement is Pounds per Square Inch so at normal atmospheric pressure its applying no force, but as you compress/pressurise the air it starts pushing on the inside of the manifold and piping. Basically the reason for this is that you now have forced a higher volume of air into the space than the atmospheric pressure at whatever altitude you are at. By increasing the air pressure(therefore overall density of air) you can force more air into the engine, without having to make larger pipes or increase port size.

So by putting in a larger turbo you are able to compress more air, it might only go to the same 'PSI' but its actually filling up a larger volume with the same compression.

An easier example to understand might be a water pump, a small water pump might be able to move around or 'pressurise' a volume of say 10. If you put that into a system with 20L you would need a bigger pump to pressurise the system to the same level. So the overall PSI might be the same but you are actually moving a much larger volume of water.

I'm by no means an expert, this is just what I've gathered so if anyone thinks I'm wrong please let me know.

So by putting in a larger turbo you are able to compress more air, it might only go to the same 'PSI' but its actually filling up a larger volume with the same compression.

Careful :)

Not filling a larger volume.

The volume of the piping/plenum/cooler is always a constant.

It is the amount of air flowing at that given pressure that differs, measured in lb's/min.

One turbo will flow 40lb's/min of air @ 15psi.

The other will be 52lb's/min of air @ 15psi.

Careful :)

Not filling a larger volume.

The volume of the piping/plenum/cooler is always a constant.

It is the amount of air flowing at that given pressure that differs, measured in lb's/min.

One turbo will flow 40lb's/min of air @ 15psi.

The other will be 52lb's/min of air @ 15psi.

Good point. Am I correcting in saying that if you increase the amount of air you can compress that you could fill a larger volume at the same PSI with a larger turbo where a smaller one may struggle?

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now


  • Similar Content

  • Latest Posts

    • Actually everyone on the roads was really well behaved. The only person that did any minor tailgating was a local hoon in a Turbo Focus. Unfortunately we weren't going the same way so there was no grand initial D touge battle. Lots of people pulled over and let me through. The amount of "Hey man nice car, omg skyline, nice 34 man woo" was suprising. Like really suprising. Like almost annoying. My partner was obviously surprised, she'd never seen anyone in the real world point out the car/like the car/want to chat about the car before, so to have like 3 people per day mention it was notable, I could finally say SEE? SOMEONE THINKS THEY'RE COOL. Everyone was also pretty suprised about the weather. Every day was dry and about ~13-14C. Mount Wellington had a sign that said they close the gates at 9pm and I was heading up there at about ~7:30. It was VERY apparent that conditions were getting significantly worse by the minute on the way up and down. The road on the mountain was terrible though, it's no driving road. I have various suspension related questions now. Luckily it was only about 20 minutes from where we were staying to the top of the mountain as said Google maps. We only had the 2 nights in Hobart. We went to the Farm Gate Market though which was really good - And went down to the Hastings Thermal springs/caves down there during the day. I'd definitely be up for going back again, so luckily there's a few more sights yet to see. Didn't get to do the west coast/queenstown/cradle mountain so this was supposed to be a 'scouting' trip anyway of sorts if I were to one day do/take part in/organize a more car-focused trip. As for the boat, it wasn't bad. Well it was bad, but not in the way you're thinking. We did the night trip which leaves at 6:45 (though you have to be there ~2 hours earlier) and arrives the next morning at about 6am. There is nothing to do on the ship. If you plan accordingly and bring a book/tablet/show to watch/charger you can just chill out, take some Travacalm and just sleep through it. The food there is an extremely basic buffet that costs $32 a plate, or $14 for a $3 pizza. The way back we had a travel kettle and a few different types of cup noodles and made our own tea/coffee in the room. This was a far superior way to do it. At the very least book one of the rooms with beds. I guess as we were in the off season we didn't have room mates. You get an option for rooms with 4 beds (2x bunks) or a room with just the two bottom beds. There's also some option for a deluxe queen bed but it's much pricer. We've been on sleeper trains in Asia before so we figured this is similar (and it was)
    • You just gotta be really, really, really clear and decisive with what you want your end product to be. 99% of people who want this conversion aren't "I want to run a 295 front tyre!" so they don't really need the widebody. They just want the OEM body to look a little less dumpy, so bonnet, bar, skirts job done with some camber, stretch, slam. It's when you want that, but then decide to pivot later you get big problems. See also if you're willing to get an all in one fibreglass bar, and you're willing to accept fibreglass problems like cracking the entire item on a driveway, instead of just a piece attached to the bottom, etc etc etc. Decide this all before buyin'.
    • After @Kinkstaah debacle, I'd never want to try and get it right 😛
    • The hood lines up with the fenders. The front bar doesn't perfectly line up with the fenders where the wheel arch is. You have to 'squeeze' the front bar 'in' as it wants to naturally flare out and be longer on the sides. There's a few threads where people notice this when they only swap a GTR style bumper and front bar. Unless you have genuine OEM items - you may be better served getting conversion kits. There are GTT bumpers to fit GTR hoods. There are GTR hoods (non genuine) to fit the GTT bracketry. MAY  
×
×
  • Create New...