Jump to content
SAU Community

Recommended Posts

Hah, realized where I went wrong. Just asked dad what the deal was and he told me his prop tacho in the glider is from another aircraft which used a different gear ratio, so this one's readings are well off :blush: He knows the equation to work out it's true speed, but really he just uses it to monitor the 'norm' for prop-slip.

So my example is not as relevant as I thought, but I think the main point of the strength of nylon is still valid.

  • Replies 54
  • Created
  • Last Reply

Top Posters In This Topic

I just calculated the tip speed of a 1m diameter prop at 200,000 rpm at over 600 km/h. So there is definitely something not right there.

Care to calculate the tip-speed of a 1.63 meter diameter prop, alt. of 10,000 feet; engine speed of 5000rpm, prop pitch of 137.6cm and a gear ratio of 1.18? Those are the specs of dad's Stemme. Dad gave me the formula to work it out, but I tried it and got lost lol.

I must be on drugs. I wouldn't trust the 600 km/h speed I reported earlier. I did it in Excel and it looked good and so I posted and then closed the spreadsheet. So to answer your question I had to redo the calc and the numbers came out quite different. I must have divided something when I was supposed to multiply it I think. Anyway, the answer for 80000rpm by 1m prop is more like 15000 km/h, which is of course totally stupid. For your 1.63m propeller at 5000 rpm x 1.18 (=5900 rpm) the tip speed is about 1800 km/h. Which is also silly, because supersonic tip speed are not kosher. Even if I got your gear ratio back to front and the prop speed is only 5000 / 1.18 (=4237 rpm), then the tip speed is still 1300 km/h. I don't like that answer either. The altitude and the prop pitch don't impact on the tip speed. Tip speed is just how many times per second the tip completes each circle, multiplied by the length of the circumference. 1.63m diameter is 5.1m around. 5900 rpm is 98.3 revs per second. Multiply number of turns by distance and you get 503 m/s tip speed, which is 1812km/h. Nasty. Now, if by chance I read your gear ratio really wrong, and there is actually an 18:1 reduction from engine to prop shaft, then the tip speed is 85 km/h, which seems really far too low. I went and googled up a tip speed calculator, http://www.pponk.com/HTML%20PAGES/propcalc.html which seems to suggest that 0.9 mach is the optimum tip speed. I put your dimensions into it and it came back with >900mph (mach 1.5) as the tip speed (at 5900 rpm) and said don't do it. So that agrees with my calcs. I don't know what to say about your tip speed. I don't like the answer, so maybe one of the inputs is wrong.

Care to calculate the tip-speed of a 1.63 meter diameter prop, alt. of 10,000 feet; engine speed of 5000rpm, prop pitch of 137.6cm and a gear ratio of 1.18? Those are the specs of dad's Stemme. Dad gave me the formula to work it out, but I tried it and got lost lol.

Vtip = πdn

Where d is the diameter in metres, and n is the angular velocity (RPM).

=3.14 * 1.63 * (5000 * 1.18)

=30212.69m/min

=1812.76km/h

1812.76km/h at the tip on a 1.63m prop at 5000 engine RPM's through a 1.18x gearbox in a standard atmosphere. You sure about those figures?? When a prop is operated so it's tip exceeds mach ~0.88 (934km/h), it's efficiency starts to go downhill due to the loss of laminar airflow over the aerofoil; shockwaves that interrupt the thrust being generated. Back to the drawing board for you Hanaldo! lol

Just for shits'n, I took the liberty of calculating the same prop's tip speed, but at 200000RPM.....

Over Mach 49. :3

I must be on drugs. I wouldn't trust the 600 km/h speed I reported earlier. I did it in Excel and it looked good and so I posted and then closed the spreadsheet. So to answer your question I had to redo the calc and the numbers came out quite different. I must have divided something when I was supposed to multiply it I think. Anyway, the answer for 80000rpm by 1m prop is more like 15000 km/h, which is of course totally stupid. For your 1.63m propeller at 5000 rpm x 1.18 (=5900 rpm) the tip speed is about 1800 km/h. Which is also silly, because supersonic tip speed are not kosher. Even if I got your gear ratio back to front and the prop speed is only 5000 / 1.18 (=4237 rpm), then the tip speed is still 1300 km/h. I don't like that answer either. The altitude and the prop pitch don't impact on the tip speed. Tip speed is just how many times per second the tip completes each circle, multiplied by the length of the circumference. 1.63m diameter is 5.1m around. 5900 rpm is 98.3 revs per second. Multiply number of turns by distance and you get 503 m/s tip speed, which is 1812km/h. Nasty. Now, if by chance I read your gear ratio really wrong, and there is actually an 18:1 reduction from engine to prop shaft, then the tip speed is 85 km/h, which seems really far too low. I went and googled up a tip speed calculator, http://www.pponk.com...S/propcalc.html which seems to suggest that 0.9 mach is the optimum tip speed. I put your dimensions into it and it came back with >900mph (mach 1.5) as the tip speed (at 5900 rpm) and said don't do it. So that agrees with my calcs. I don't know what to say about your tip speed. I don't like the answer, so maybe one of the inputs is wrong.

You're correct, altitude only comes into when trying to work out tip mach speed.

I just googled the Stemme 10 specs, and the manual gives the same specs as I gave you. Maybe there is another gear set somewhere along the line which gives another reduction that isn't mentioned? I have no idea, I'm confused now :/ I know for a fact the engine is revved to 5000rpm on take-off, that was drilled into me when I was learning to fly it. Cruising rpm is more around 2400.

the rotax engine itself has an integral reduction gear too...i mentioned it earlier was 1:2.2 something

so the prop will be running through 2 gearboxes, 1 at the motor and 1 in the prop hub

The Rotax is out of the S10 VT, dad has an S10 VH-GTS which uses a Limbach L2400 motor. The only specs I can find on that motor are from a Stemme S10-V, but that's an L-2400 EB1.AD motor which is different to dad's. I can guarantee that at 3400rpm, there is no way dad's glider would get off the ground.

In any case the RPM is quite irrelevant to the earlier point; would everyone here agree that 90% of mach 1 is pretty stressful operating conditions?

Because I haven't seen it in real life I am going to call you a wanker and not believe you.

not really - I still ahven't seen a plastic compressor, even though I have visually inspected a few GTT and GTS-T turbos.

If you want to keep crapping on about shit thinking your winning, good for you. Whatever makes you sleep better at night.

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now



  • Similar Content

  • Latest Posts

    • I refreshed the OEM injectors with the kit and connected it up. It now ideals okay even with the IACV removed. Driving still has the same cutoff issue like the 550cc injectors so the issue is somewhere else. I bought FPG's Fuel Pump Hanger. I will be installing it next, but it is not as straightforward as I thought it was with my limited wiring knowledge and no instruction on the specific model I purchased (FPG-089). I also got the incorrect billet clamp as I could not find info on the OEM sizing.
    • Stop looking at the garage floor, and turn the radio up a bit louder if there's any strange noises...
    • No. Turbo shuffle and surge/flutter are not the same thing. Specifically, on a GTR, turbo shuffle has a definite meaning. On a GTR, the twin turbos are assumed to be the same thing and to operate the same way, exactly. In reality, they do not. Their exhaust sides are fed and exhaust a little differently, to each other. Their inlet sides are fed and exhausted a little differently, to each other. Consequently, when they are "working" they are often at slightly different points on the compressor map compared to each other. What this means, particularly when coming on boost, is that one of them will spool up and start producing extra flow compared to the other, which will put back pressure on that other compressor, which will push the operating point on that other compressor up (vertically). This will generally result in it bumping up against the surge line on the map, but even if it doesn't, it upsets the compressor and you get this surging shuffle back and forth between them That is "turbo shuffle" on a GTR. It is related to other flutter effects heard on other turbo systems, but it is a particular feature of the somewhat crappy outlet piping arrangement on RB26s. There are plenty of mods that have been attempted with varying levels of success. People have ground out and/or welded more material into the twin turbo pipe to try to prevent it. Extending the divider inside it works, removing material doesn't. There are aftermarket replacement twin turbo pipes available, and these exist pretty mush purely because of this shuffle problem.
    • You can temporarily* use lock collars to keep it in place until you can do the bushes, back the nuts off, slide them in, snug back up. *temporarily is often for ever
    • Thanks for the quick reply. To be clear, when you say turbo shuffle do you mean turbo flutter "stustustu" or referring to something else? I had thought they were the same thing. When I wrote the post my intention was to say it wasn't a flutter/compression surge sound. My understanding was that a flutter sound would be occurring when throttle is released, whereas I can keep the throttle in the same position for this noise
×
×
  • Create New...